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RESUMO

Este trabalho de formatura consiste em uma aplicacdo da Teoria de Portfélios a matriz

energética brasileira, com foco no modelo de Média-Variancia de Markowitz.

E apresentado, inicialmente, um estudo comparativo de diferentes modelos de otimizagéo
de portfolio propostos pela literatura, sob duas métricas: desempenho e rugosidade, em que
rugosidade é um indicador de quanto um portfélio varia ao longo do tempo. Em seguida,
algoritmos evolutivos sdo utilizados para otimizar os parametros dos modelos estudados e,

consequentemente, obter uma melhora substancial de seus desempenhos.

Concluimos que, apesar das diversas propostas de melhoria presentes na literatura
académica, como otimizacdo bayesiana e 0 uso do CVaR como medida de risco, 0 modelo
classico de Markowitz, mesmo ndo sendo o mais robusto, mantém a sua posi¢cao como modelo
com melhor balango entre desempenho e robustez dentre os analisados. Verificamos também
que utilizar algoritmos evolutivos para parametrizar modelos de otimizacdo de portfélio é

extremamente eficaz.

Ao aplicar o modelo de Markowitz a problematica da geracdo de energia no Brasil, nds
inicialmente localizamos a atual matriz energética em relacdo ao plano de risco-retorno e
demonstramos através da fronteira eficiente que ela é sub-6tima. Em seguida, propomos uma
matriz energética otimizada que concilia uma reducdo consideravel do risco e um aumento
significativo do retorno (neste contexto, denominamos “retorno” a energia gerada por unidade

monetaria paga pelo governo).

Por fim, analisamos a sensibilidade do portfélio étimo em relacdo a proporcao de energia
hidrelétrica exigida, concluindo que o Brasil teria grandes beneficios em diminuir a
dependéncia de recursos hidricos. Ao comparar 0s nossos resultados com o de outros autores,
demonstramos que, sob a perspectiva do nosso estudo, a nossa proposta é mais benéfica para o

pais.

Palavras-chave: otimizacdo de portfolios, geracdo de energia, matriz energética, modelo

da média-variancia, otimizagdo robusta, VaR, CVaR, algoritmos evolutivos, redes neurais






ABSTRACT

This bachelor thesis presents an application of portfolio theory, in particular of

Markowitz’s mean-variance model, to energy generation in Brazil.

We start with a comparative study of several portfolio optimization models found in the
academic literature, according to two criteria: their performances and their roughness, in
which roughness is defined as a measure of portfolio composition change over time. We then
proceed with the use of evolutionary algorithms to optimize the parameters of these models

and, hence, substantially improve their performance.

We conclude that, in spite of several improvement propositions, such as the use of bayesian
optimization and the CVaR as a risk measure, the classic Markowitz model, although not the
most robust among the analyzed models, keeps its position as the best-performing model. We
also verify that evolutionary algorithms are extremely efficient to optimize the parameters of

portfolio models.

By applying the mean-variance model to energy generation in Brazil, we demonstrate that
Brazil’s current energy-generating portfolio is suboptimal and propose an optimized energy
portfolio, which conciliates a sizable reduction in risks and a valuable increase in energy
production return (in this context, “return” corresponds to the amount of energy generated by

each dollar paid by the government).

We then conduct a sensibility analysis on the optimal portfolio, regarding the minimum
required ratio of hydroelectric power. We conclude that Brazil would greatly benefit from
decreasing its dependence on water resources. Lastly, we compare our results to those of
similar studies. We demonstrate that, according to our models, the optimal portfolio we propose

is superior to the other approaches.

Keywords: portfolio optimization, energy generation, energy generation portfolio, mean-

variance model, VaR, CVaR, evolutionary algorithms, neural networks
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1. INTRODUCAO

1.1. Apresentacdo da Empresa

Fundada em 1963 por Bruce Henderson, o Boston Consulting Group (BCG) esté presente
no Brasil desde 1997. Com faturamento de 4 bilhdes de dolares em 2013, o BCG ¢é a segunda
maior empresa do mundo de consultoria estratégica e se organiza matricialmente através de

areas funcionais e areas de expertise na industria, conforme apresentado na Figura 1:

Areas de expertis
funcional

Finangas Corporativas .
Estratégia I.

Marketing e Vendas I.
Organizagéo I.
Operagtes I.

Ti I.

.

Areas de expertise na indastria

HEEEENEB
Beleza e Salde
Servigos Financeiros

L_

| Escritérios

Figura 1 — Organizacéo matricial do BCG

Conhecida mundialmente por seus servicos, ferramentas analiticas (matriz BCG de
portfolio, curva de experiéncia, entre outras), publicacbes e ex-funcionarios, o BCG tem como
missao ajudar corporagdes com grande relevancia em seus segmentos de atuacdo a adquirir e
sustentar uma vantagem estratégica de longo prazo. Como exemplos de clientes mundiais do
BCG, podemos citar Ford, Pfizer e IBM. No ambito de responsabilidade social, o Boston
Consulting Group apoia muitos projetos sociais, como o Instituto Ayrton Senna, o Instituto
Natura e a plataforma de inovagéo social Yunus Social Business. Atualmente, os principais

concorrentes do BCG no mercado de consultoria estratégica sdo McKinsey & Co. e Bain & Co.

Nos rankings A Melhor Empresa Para se Trabalhar de 2014, o BCG ficou em 1° na
Consulting Magazine e em 3° na Fortune, atras exclusivamente do Google e de outra empresa

de softwares.



20

1.2. Programa de Estagio

O programa de estagio se organizou em torno de duas tarefas principais:

A. Realizagédo de um estudo macroecondémico, comparando o atual contexto do Brasil com
o de outros paises emergentes, em especial os outros BRICS (RUssia, india, China e
Africa do Sul). O foco do estudo foi em produtividade, definida como o produto interno
bruto gerado por pessoa no pais.

Como resultados principais, pode-se citar que o Brasil possui produtividade baixa,
alinhada com a dos paises em desenvolvimento, e taxa de crescimento também baixa,
similar a dos paises desenvolvidos. Esta combinacdo de caracteristicas configura um
grave problema macroeconémico para o pais.

Para melhorar compreender o problema da produtividade, foi realizado um estudo sobre

o setor elétrico do pais, que motivou a definicdo do tema deste trabalho.

B. Criacdo de um modelo de analise de Retorno Total para o Investidor (TSR, do inglés
total shareholder return). O TSR é uma métrica de desempenho amplamente utilizada

no mercado de capitais, dada a sua facil compreenséo:

Valorizagdo da A¢do + Dividendos
TSR =

Investimento Inicial

Conquanto seja simples, 0 TSR ¢é extremamente poderoso, pois é possivel decompd-lo
em subcomponentes, de forma a analisar as alavancas de geracdo de valor para cada
empresa. Pode-se, por exemplo, decompor o TSR em crescimento de receita, alteracdo
na margem, valorizagdo nos multiplost, aumento do endividamento, diluicio das agGes

da empresa, etc.

1 Mdltiplos sdo medidas de desempenho de uma empresa, expressas na forma de razdes entre duas métricas
mais simples. Por exemplo, o multiplo P/L é muito utilizado, correspondendo a razao entre o Preco de uma agdo
e o Lucro gerado pela empresa. Neste caso, 0 multiplo é uma métrica de quanto o mercado esta disposto a pagar
por cada real que a empresa gere de lucro.



21

Atraveés deste modelo, diversas andlises setoriais foram feitas, de maneira a comparar
quais séo as alavancas mais proeminentes de geracdo de valores entre empresas que

compdem a economia brasileira.

As duas atividades desenvolvidas durante o estagio motivaram grandemente a definicao do
tema deste Trabalho de Formatura. Em particular, a utilizacdo de técnicas do mercado de

capitais para analises macroeconémicas € uma temaética unificadora entre o estagio e o trabalho.

Apesar desta intrinseca relacdo, por questdes de confidencialidade dos dados dos clientes
do BCG, este trabalho ndo contém absolutamente nenhuma informacéo detalhada acerca das
atividades desenvolvidas na empresa. N&o obstante este fato, os resultados deste trabalho final
vém sendo utilizados pela empresa, com relevancia crescente ao longo do estagio. Neste
capitulo e nos subsequentes, as analises serdo tratadas como independentes das atividades

desenvolvidas na empresa, sem mencgdes explicitas a nenhum dado confidencial do BCG.

1.3. Formulacéo do Problema

Compreender as atividades de geracdo, distribuicdo e transmissdo de energia no Brasil é
uma tarefa que envolve conhecimentos multidisciplinares e tange a interseccdo entre
Engenharia, Economia e Politica. Adicionalmente, a relevancia crucial deste setor para a vida
de todos os brasileiros aumenta substancialmente a sua complexidade, em especial devido a
atual crise hidrica no pais.

Os modelos de andlise de composicdo de portfélios, muito presentes no mercado de
capitais, vao de encontro a esta problematica. Tais modelos sdo robustos — dada a enorme
variacdo das condicGes macro e microeconbémicas que regem o0s precos dos ativos —,
abrangentes — de acordo com a natureza complexa de grande parte dos ativos financeiros —,
eficientes — para responder rapidamente as demandas instaveis do mercado — e, por fim, eficazes

— para atender as altas expectativas de desempenho dos seus utilizadores.

Esta conexdo ndo-trivial entre 0 setor de energia elétrica e o mercado de capitais €
exemplificada pela crescente utilizacdo de modelos financeiros nos mercados de carbono e nos
mercados “spot” de energia. Os mercados de carbono constituem um ambiente para negociacao
de créditos de emissdo de gases de efeito estufa, cuja institucionalizacdo foi acelerada pelo

Protocolo de Quioto. Os mercados spot, por sua vez, sdo utilizados por empresas geradoras de
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energia para comercializagédo da capacidade que ndo estiver sendo vendida para o SIN (Sistema
Interligado Nacional). Nestes dois mercados, os modelos financeiros vém sendo utilizados com
respeitavel sucesso, demonstrando a adaptabilidade destes modelos as complexas questfes

energéticas de uma empresa, de um pais ou de um conjunto de paises.

Compreender, analisar e formular melhorias para um setor de tal importancia pressupde a
utilizacdo de técnicas avancadas de Engenharia. Neste trabalho, optamos por empreender 0s
conhecimentos de Pesquisa Operacional e de Teoria de Portfélios para estudar o setor

energético, por serem multidimensionais, abrangentes e computacionalmente eficientes.

1.4. Objetivo do Trabalho

O presente Trabalho de Formatura objetiva aplicar conhecimentos de Engenharia a uma
questdo imprescindivel para o desenvolvimento do Brasil: a escolha da matriz energética. Como
71% da energia brasileira vem de usinas hidrelétricas (Balanco Energético Nacional, 2014), a
matriz brasileira é passivel de muitas melhoras; em particular, diversifica-la traria diversas
vantagens, tais como mitigacdo de riscos e aumento da disponibilidade de fontes alternativas.
Neste contexto, o problema que este trabalho se prop8e a estudar é a priorizagdo das possiveis

fontes de energia para o Brasil, através de modelos utilizados no mercado de capitais.

Para realizar este estudo, subdividimos o trabalho em dois objetivos; o primeiro funciona
como uma etapa intermedidria para a realizacdo do segundo. Primeiramente, realizaremos um
estudo comparativo de diferentes modelos de otimizacédo de portfélio propostos pela literatura.
Em seguida, ja em posse deste estudo, poder-se-a de fato prosseguir com o objetivo principal
do trabalho, que é o de estudar e propor melhorias a matriz energética brasileira.

Tivemos de subdividir o objetivo em duas partes subsequentes devido a absoluta escassez
de dados sobre energia no Brasil. Este problema é frequentemente encontrado nos estudos
realizados sobre o tema. Por exemplo, os autores de um dos artigos mais recentes que
analisaram a matriz brasileira sob a perspectiva de portfolios (LOSEKANN et al., 2013)
tiveram de utilizar dados de outro artigo (AWERBUCH; SPENCER, 2007) para realizar etapas
de célculo fundamentais, ndo obstante o fato de os dados provirem de contextos completamente

diferentes.

Esta dificuldade motivou o estudo preliminar que comporéa a primeira parte deste trabalho.

Realizamo-lo para diminuir as consequéncias da escassez de dados nos resultados finais e, desta
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maneira, assegurar a plausibilidade das recomendacdes que faremos. Este primeiro estudo néo
sera feito no mercado de energia, mas no mercado de capitais. Esta opcdo decorreu da
incomensuravel diferenca existente entre a disponibilidade e a variedade de dados sobre estes
mercados; se no mercado de energia dados sdo extremamente escassos, no mercado financeiro
h& uma miriade de informac@es. Desta maneira, 0 mercado de capitais atuard como um campo

de treinamento para os estudos sobre o mercado de energia.

O primeiro objetivo serd alcancado em duas etapas. Inicialmente, como os modelos de
otimizacdo estdo sujeitos a incertezas nos calculos de seus parametros, estudaremos a influéncia
destas incertezas no desempenho global dos modelos. Em seguida, de acordo com os resultados
da primeira etapa, proporemos uma otimizacdo dos parametros do modelo de melhor

desempenho, através de algoritmos evolutivos.

Finalmente, o segundo objetivo estd organizado em trés etapas. Primeiramente, levaremos
em consideracdo todas as descobertas do estudo preliminar e aplicaremos a teoria de portfolios
a problematica da geracdo de energia no Brasil. Em seguida, realizamos uma andlise de
sensibilidade a proporcéo de energia hidrelétrica no portfélio. Por fim, compararemos 0s nossos

resultados com os de outros estudos similares.

1.5. Justificativa do Trabalho

Ao aliar energia e financas, dois temas aparentemente desconexos, este Trabalho de
Formatura — bem como muitos outros artigos e teses — propde uma politica de geracdo de
energia no pais que difere da atual. Desta forma, ele ultrapassa 0 &mbito da Engenharia ou da
Matematica Aplicada e ataca diretamente a situacdo econémica do pais. Considerando-se que
a economia do pais tem impacto direto sobre a sociedade como um todo, em termos sociais,

geograficos e politicos, este trabalho passa entdo a ter um amplo campo de influéncia.

A utilizacdo de técnicas de otimizacdo, provenientes da Pesquisa Operacional, na
probleméatica da geracdo de energia, no Brasil ou em qualquer outro pais, garante
simultaneamente economia de gastos, maior estabilidade energética e uso mais eficiente da
matriz produtora de energia (AWERBUCH, 2000).

Em particular, as técnicas de otimizacao de portfolios podem ser extremamente relevantes

para a questdo energetica, jA& que podem ser aplicadas tanto em um contexto puramente
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financeiro quanto em ativos de natureza nao-financeira. Quando aplicadas a portfolios de
investimentos financeiros, elas permitem alocar os recursos de maneira a maximizar o retorno
para um dado risco. Pode-se, alternativamente, minimizar o risco para um dado retorno. Como
sera mostrado nas proximas secdes, diversos modelos para realizar esta otimizacdo existem,

com suas respectivas vantagens e inconvenientes.

Quando aplicadas a portfolios de outra natureza, a interpretacdo de varidveis como “risco”
e “retorno” costuma depender fortemente do contexto de aplicagao. No caso da geracdo de
energia, veremos que o “retorno” corresponde a quantidade de energia gerada por cada unidade

monetaria investida.

Os conceitos de otimizacdo e diversificacdo de portfélio tém sido essenciais tanto no
desenvolvimento e na compreensdo dos mercados financeiros quanto nas analises de tomada de
decisédo (KOLM et al., 2013). O maior avango neste campo ocorreu em 1952, com o advento
do Modelo da Média-Variancia, conhecido como Teoria Moderna de Portfolios
(MARKOWITZ, 1952), que vem sendo ha mais de 60 anos o pilar de sustentacao unificador de
quase todos os modelos de otimizacdo de portfélio. Este modelo forneceu uma resposta
consistente a questdo fundamental de alocacdo de investimentos: como um investidor deve
alocar 0s seus recursos entre todas as opc¢des possiveis? Primeiramente, Markowitz quantificou
retorno e risco de um ativo, atraves das estatisticas retorno esperado e desvio-padrdo. Em
seguida, ele sugeriu que estas medidas deveriam ser consideradas conjuntamente, de maneira

que o critério de escolha seja dependente da relacdo entre estas duas variaveis.

Diversos modelos foram propostos posteriormente, utilizando abordagens matematicas
mais avancadas. Notavelmente, Rockafellar e Uryasev (2000) propuseram um modelo de
otimizacdo utilizando o CVaR (Conditional Value-at-Risk) que é em geral considerado uma
evolucdo do modelo de Markowitz. Outras evolu¢Ges do modelo incluem o uso de otimizacgao
bayesiana (MOCKUS, 1972).

Quanto a geracéo de energia no Brasil, sabemos que o pais desfruta de uma grande riqueza
fluvial. Historicamente, este fato influenciou o pais a adotar uma matriz energeética fortemente
focada em hidroelétricas. No entanto, outras opgdes existem e, como veremos ao longo do
Trabalho, podem ser mais interessantes em muitos cenarios. Como ocorreu em todos os paises,
a atual combinacdo de formas de geracdo de energia no Brasil é fruto de uma confluéncia de

fatores: interesses politicos, ocupacdo territorial, clima e vegetacdo, desenvolvimento
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econdmico, entre outros. A atual crise hidrica no pais reatesta a importancia deste tema,
demonstrando que uma matriz energética fortemente dependente de 4gua pode ser uma escolha

demasiadamente arriscada e imprudente para uma nacao das proporc¢des do Brasil.

E natural e previsivel que o “6timo” que encontraremos matematicamente dificilmente
conseguira ser integralmente posto em pratica. Evidentemente, isto ndo diminui a sua
importancia como orientacdo para futuras escolhas de investimentos — neste sentido, o 6timo

que encontraremos atua como um alvo ideal a ser alcangado.

1.6. Estrutura do Trabalho

O primeiro capitulo apresenta a empresa do estagio e a formulacao do problema, bem como
0 objetivo e a justificativo do trabalho. O capitulo seguinte apresenta, concomitantemente, 0s
fundamentos tedricos que atuardo como pilares de sustentacdo do trabalho e a revisdo
bibliogréafica. Decidimos permear os topicos tedricos com a revisdo bibliografica para diminuir

a compartimentalizacdo do trabalho.

Inicia-se a parte original do trabalho no Capitulo 3. Primeiramente, sdo apresentados 0s
fatores que definem os modelos que serdo estudados. Tais fatores seguem uma categorizacao,
visando a facilitar as analises posteriores. Ainda no Capitulo 3, é realizado um estudo
comparativo dos modelos estudados, que correspondem tanto a modelos classicos quanto a
modelos modernos da Literatura Académica. Este estudo focard em duas métricas; a saber,

desempenho ao longo do tempo e variacdo da composicao do portfélio ao longo do tempo.

Ainda no terceiro capitulo, ja em posse do modelo com melhor desempenho, far-se-a uso
de Algoritmos Evolutivos para a otimizacdo dos parametros do modelo, objetivando melhora-

lo segundo as métricas de desempenho estabelecidas.

O Capitulo 4 apresenta a aplicacdo do modelo de otimizacéao de portfélio usado no mercado
financeiro & matriz energética brasileira. Em seguida, s&o discutidos os resultados e as
consequéncias, em termos de politicas governamentais. O foco é dado nos conceitos por tras da
aplicacdo deste algoritmo e nas adaptacdes realizadas, de tal forma a esclarecer as vantagens e

0s inconvenientes de tal abordagem.

Por fim, o Capitulo 5 apresenta as conclusdes.
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2. FUNDAMENTOS TEORICOS

2.1. Pesquisa Operacional

Apesar de se fundamentar em conhecimentos muito anteriores, o campo de pesquisa
operacional, também conhecido como ciéncia da gestdo, tornou-se uma disciplina
independente no fim da década de 1930. De acordo com van Hoeve (2005), grande parte da
motivacgdo para esta disciplina veio das opera¢fes militares durante a 22 Guerra Mundial, dai o
nome de “operacional”. Apesar da dificuldade de encontrar uma defini¢do que englobe todos
0s ramos de pesquisa, o Institute for Operations Research and the Management Sciences usa a

seguinte definicéo:

“Pesquisa Operacional e as Ciéncias da Gestio sio as disciplinas profissionais que
lidam com a aplicacio de tecnologia da informacao para tomadas de decisido conscientes.”

(Traducéo livre.)

Na prética, Pesquisa Operacional designa um conjunto de algoritmos e técnicas, como
programacéo linear, programacdo inteira, programagdo né&o-linear e algoritmos evolutivos.
Estes algoritmos sdo usados para avaliar linhas de acdo alternativas e encontrar as solucdes que
melhor servem aos objetivos de individuos ou organizacdes. Dada a sua forca econdmica

comprovada, pesquisa operacional foi — e ainda é — fruto de grandes desenvolvimentos.

Historicamente, muitas das técnicas de pesquisa operacional tém se provado extremamente
Uteis para resolver problemas de cunho pratico, como no campo da logistica ou das financas.
Atualmente, com o apoio de recursos computacionais de crescente capacidade de
processamento, a pesquisa operacional permite utilizar enormes quantidades de dados para
analisar problemas extremamente complexos, sempre visando a garantir que a solugéo

encontrada seja a mais interessante para o usuario, de acordo com o modelo utilizado.

Além de servir aos propositos de empresas, a pesquisa operacional tambem tem sido
utilizada de maneira promissora por governos, sobretudo dos EUA. No Brasil, esta pratica ainda
ndo é bem disseminada, porém este Trabalho de Formatura serd um exemplo concreto do poder

da utilizacdo destas técnicas para o bem publico.
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2.2. Preco, Retorno e Risco de Ativos

Antes de apresentarmos o modelo de Markowitz, que serd a base deste trabalho,

definiremos alguns conceitos que serdo muito usados posteriormente?.

2.2.1 Preco

Numa primeira abordagem, consideraremos ativos negociados no mercado de ac¢Ges para
exemplificar os conceitos importantes para otimizacdo de portfolios. No caso dos ativos
financeiros, chamamos P, 0 preco no instante t. Geralmente, toma-se o preco de fechamento
do ativo, no fim do dia, semana ou més. O preco de fechamento € o Gltimo prego a que um titulo
foi comercializado no intervalo considerado. Outros pre¢os importantes, e que serdo utilizados
nas secles subsequentes, sdo os de alta (high) e baixa (low) em um determinado periodo,
correspondendo respectivamente ao preco mais alto e ao mais baixo a que o ativo foi negociado.

Por enquanto, focaremos apenas no preco de fechamento P,.

Consideraremos que o universo de investimentos possiveis seja composto de n ativos com

retornos ry, ..., Ty, onde Vi, r; € uma variavel aleatoria.

2.2.2 Retorno
Para estimar o retorno futuro de um ativo, a maneira mais simples é calcular a média

historica. Portanto, para cada ativo i, o retorno esperado é dado numa primeira abordagem por:

E[r] = p;

Na equacdo acima, E[r;] designa a esperanca do retorno do ativo i e u; € a média aritmética
do vetor de retornos do ativo i. Cada componente deste vetor sera calculado através da seguinte

férmula, que calcula o retorno entre os instantes t — 1 e t:

P,

R, =1In
' | S

O retorno calculado € logaritmico (natural), pois a distribuicdo seguida é mais proxima de
uma distribuicdo normal do que se o retorno fosse calculado da maneira tradicional (FABOZZI

et al., 2007). Similarmente ao retorno tradicional, definido pela equacéo abaixo,

2 Estrutura baseada em Félix Roudier (2007).
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P — Py

Rtrad —
' Py 4

0 retorno logaritmico tem a conveniente propriedade de ser negativo quando o preco do

ativo caiu e positivo quando este subiu.

Podemos também calcular o retorno esperado de todo um portfélio de investimentos P,

composto por n ativos, em que w; é a porcentagem dos recursos alocada a cada ativo:

i=

n n
pp = E[rp] = z w;E[r;] = z Wil
1 i=1

2.2.3 Risco
A. Variancia
Existem varias formas de calcular o risco de ativos. A mais classica é a variancia dos

retornos dos ativos, por ter sido estabelecida no modelo de Markowitz.
Para uma dado ativo i, o risco €, portanto, dado por:
o; =Var(r) = E[(r; — E[r;])?] = E[(r; — uy)?]
A covariancia entre os ativos i e j é definida como:
o;; = Cov(ry1y) = E[(r; — E[ri)(v; — E[r}])] = E[(ri — ) (v — 1;)]
A correlagdo entre os ativos i e j é definida como:

P =24

Y O'iO']'
Estamos agora em condicBes de calcular o risco (variancia) de um portfélio de
investimentos P, composto por n agdes, em que w; € a porcentagem dos recursos alocada a

cada ativo (GRUBER et al., 2014, p. 56):

n n 2 n 2
op =E[(rp—pp)* 1 =E (Z W;r; — Z wiﬂi) =E <Z w;(r; — ﬂi))
i=1 i=1 i=1
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n n-1 n
o} =E Z w? (r; — p)? +2 Z Z ww; (r; — w)(r; — 1))
i=1

i=1 j=i+1

n n-1 n
ok = Z(aiwi)z +2 2 2 W;W;0;;
i=1 i=1j=i+1
Um dos problemas de se estimar o risco atraves da variancia € que ela ndo leva em

consideracdo o sinal da variagéo do preco de um ativo. Um ativo pode ter alto risco se o preco
estiver subindo significativamente varios dias seguidos, por mais que, intuitivamente, isto seja
uma boa indicacdo para os investidores. Para corrigir este problema, outras medidas foram
criadas, notavelmente o VaR e o CVaR. Outras medidas ainda mais avangadas, como o EVaR
(Entropic Value-at-Risk), existem mas ndo serdo abordadas neste Trabalho de Formatura
(consultar, por exemplo, AHMADI-JAVID, 2012).

B. VaR (Value-at-Risk)
Intuitivamente, o VaR (Value-at-Risk) é o calculo da maior porcentagem de perda que um
investidor pode ter no periodo seguinte, com um nivel de confianca de a. O VaR possui trés

componentes: um periodo de tempo, um nivel de confiangca e uma porcentagem de perda.

Evidentemente, o intervalo considerado (dia, semana, més, ano) e o nivel de confianca
(90%, 95%, 99%) sdo escolhidos para cada situacdo analisada. Ha diversas maneiras se calcular
0 VaR. Uma das mais diretas é através do histograma da frequéncia das faixas de valor em que

se encontraram 0s riscos histéricos, tal qual a figura abaixo:

Histograma para Calculo do VaR
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Figura 2 — Célculo do VaR (Value-at-Risk)
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A figura acima € o histograma de 400 nUmeros aleatérios, gerados segundo uma
distribuicdo normal (u = 0,6 = 0.08). Para calcular o0 VaR relativo a um dia com um nivel de
confianca de 5%, basta encontrar a menor perda que ocorreu entre 0os 20 menores valores (5%).
Este valor corresponde a 13%. Portanto, podemos estimar, com 95% de confianca, que a pior

perda diaria ndo vai exceder 13%.

Em conclusdo, definimos o0 VaR com confianca de & como o (100- a)-ésimo percentil da
distribuicdo de retornos historicos para uma distribuicdo X como (ROCKAFELLAR, R. T;
URYASEV, S., 2000):

VaR, = min{z|Fx(z) = a}
onde Fx(z) = P{X < z}

C. CVaR (Conditional Value-at-Risk)

O CVaR (Conditional Value-at-Risk) deriva do VaR, numa tentativa de ampliar a sua
utilidade e conferir propriedades matematicas mais interessantes. Intuitivamente, o VaR calcula
qudo ruim pode ser o desempenho de um portfolio, enquanto o CVaR calcula quanto dinheiro

sera perdido, caso o portfélio tenha um desempenho ruim.

O CVaR ¢é uma média ponderada entre o VaR e o valor das perdas que excedem o VaR.
Para ilustrar a vantagem desta medida, podemos supor que a distribuicdo das perdas tenha uma
cauda (a esquerda) que, apesar de ocorrer com baixa frequéncia, corresponda a uma perda
enorme. Nestes casos, 0 VaR é incapaz de detectar quao grande seré a perda nos piores casos,
enguanto que o CVaR ndo tera esta deficiéncia. A figura abaixo, adaptada da anterior, ilustra
esta situacdo. Podemos reparar que o tamanho das perdas, nos piores casos, € maior do que no

histograma anterior.

Histograma em que o VaR € ineficiente
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Figura 3 — Ineficiéncia do VaR
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Para uma distribuicio X e um nivel de confianca a, 0 CVaR é definido como
(ROCKAFELLAR, R. T.; URYASEV, S, 2000):

CVaR,(X) = foozdFj'é(z)

Onde:

0, quando z < VaR,(X)
Fx(z) = {FX(Z) -a

quando z = VaR,(X)
1-a

Fy(z) =P{X < z}

2.3. Modelo de Markowitz

2.3.1 Histdrico
O primeiro modelo importante de otimizacdo de portfolios foi desenvolvido por Harry Max
Markowitz, um economista americano que recebeu o John von Neumann Theory Prize em 1989

e 0 Nobel Memorial Prize in Economic Sciences em 1990.

Em 1952, Markowitz publicou o artigo classico “Portfolio Selection”, no Journal of
Finance. Neste artigo, Markowitz deriva o que é chamado de Teoria da Media-Variancia,
afirmando que um investidor racional deve sempre maximizar o retorno para um dado nivel de

risco ou minimizar o risco para um dado retorno.

2.3.2 Fronteira eficiente

A aplicagdo deste principio leva a criagdo de uma “fronteira eficiente”, na qual todos os
pontos obedecem a regra supracitada: para um dado retorno, todos os pontos a direita da
fronteira representam riscos excessivos; inversamente, para um dado risco, todos 0s pontos

abaixo da fronteiram apresentam retornos menores do que o retorno do portfélio da fronteira.
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Fronteira Eficiente de um Portfdlio de Investimentos
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N

Figura 4 — llustracdo da fronteira eficiente

Neste método, a medida do risco do ativo utilizada é a variancia. Utilizamos o desvio-
padrdo nas representacdes graficas para facilitar a comparacéo com o retorno, ja que ambos sdo

expressos nas mesmas unidades.

2.3.3 Formulag@o matematica
A formulacdo classica do modelo de Markowitz € (GRUBER et al., 2014, p. 102):

Minimizar (a variancia):
O-P = E;T 2 Z))

Sujeito as restri¢oes:

w =Ty
w; = O,Vl
1Tw=1

Onde:

a2 é a variancia do portfolio P;
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w é 0 vetor dos pesos de cada elemento do portfélio;

I € o vetor dos retornos esperados de cada elemento do portfélio;

1éovetor (1,1, ...,1);
T € retorno desejado para o portfélio;
X é amatriz das covariancias dos elementos do portfélio.

A matriz das covariancias X ¢ uma matriz simétrica, cuja diagonal é a variancia de cada

elemento do portfolio e o restante é formado pelas covariancias dos elementos dois a dois, ou
seja, o5 = Cov(r,-, rj). Este parametro do modelo sera objeto de estudo deste artigo, por estar

sujeito a incertezas. Pretende-se, portanto, analisar o grau de impacto das incertezas na solugédo

6tima do modelo.

O modelo de Markowitz consiste em, dado um retorno-alvo rgy, minimizar-se a variancia

a2 do portfélio de investimentos.

2.3.4 Solucdo analitica

No caso elementar apresentado acima, o modelo de Markowitz possui uma solucédo
analitica, dada por (ROUDIER, 2007):

=511 a" (7))

Onde A ¢ definida por:

Ao <ﬁT rlg uarzt i’)
arr11 1ry11

Nos casos mais complexos, quando da existéncia de restri¢des sobre a composi¢do do
portfolio ou da consideracdo dos custos de transagdo envolvidos, ndo ha solucdes analiticas.
Nestes casos, € necessario recorrer a algoritmos numéricos, cuja aplicacdo pode ser custosa
computacionalmente. O custo computacional de utilizar estes algoritmos numéricos,
especialmente no caso da utilizacdo do CVaR como medida de risco, sera recorrente nos

capitulos subsequentes.



35

Mesmo apds mais de 60 anos de publicacdo do artigo de Markowitz e de o0 modelo estar
sujeito a incertezas, devido as estimacOes realizadas no célculo do vetor de retornos g e da
matriz de covariancias X, o modelo da Média-Variancia ainda é a abordagem padréo para a
resolugédo deste tipo de problema. No entanto, muitos pesquisadores vém mostrando que o
método ndo tem um bom desempenho, dado que ele pde peso excessivo para ativos com alto
retorno esperado, independentemente de possiveis erros nos dados de entrada. Além disto, 0s
portfélios gerados pelo modelo de Markowitz costumam ter um custo de transacdo muito
grande, devido a excessiva realocacdo dos ativos. Com isto, muitos outros modelos foram

estabelecidos, notavelmente a otimizagéo robusta e 0 modelo de Black-Litterman.

Entre os pesquisadores que lidaram com os problemas do modelo da Média-Variancia,
encontramos Michael J. Best e Robert R. Grauer (“On the sensitivity of mean-variance-
efficence portfolios to changes in asset means: Some analytical and computacional results”),
bem como Richard C. Green e Burton Hollifield (“When will mean-variance efficient portfolios
be well diversified?”).

2.4. Otimizacdo Bayesiana

A abordagem classica de Markowitz é composta de duas etapas: estima-se as distribuicdes
gue descrevem o mercado e entdo realiza-se a otimizacdo, como se as distribuicdes fossem
exatas. No entanto, as distribuicdes contém incertezas, tornando a otimizagdo sub-6tima.
Adicionalmente, como o processo de otimizacéo é extremamente sensivel aos dados de entrada,

a sub-otimalidade devida aos erros de estimacao pode ser consideravel (MEUCCI A., 2005).

Para contornar este problema, otimizagdo robusta incorpora no préprio modelo a existéncia
de incertezas: o investidor escolhe a melhor alocacdo de portfolio no pior cenario possivel
dentro de um certo conjunto de incerteza (uncertainty set). A otimizacao bayesiana é, portanto,

uma das maneiras de se aumentar a robustez das otimizacdes realizadas.
Ainda de acordo com Meucci (2005), a formulacdo do modelo de média-variancia, na

versao robusta, é:

w; = argmax {mm{w’u}}
ueo

u
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Sujeito a:

w € Cmax{w'Iw} < v;
X€e0y

Onde:

= O5e 6; sdo, respectivamente, os conjuntos de incerteza para X e u.

= € é um conjunto de restri¢cGes sobre os pesos do portfélio.

= v; sdo variancias-alvo para o retorno do portfolio.

O importante a se notar sobre esta formulacdo é que ha restricdes sobre a variancia do

portfdlio, de forma que as incertezas ja sao levadas em consideracdo durante a otimizacao.

2.5. Rugosidade

Os custos de transacdo podem ser grandes o suficiente para corroer significativamente a
lucratividade de um dado portfélio, devido as taxas fixas e variaveis cobradas pelas corretoras
de valores e pelas bolsas de valores. Consequentemente, quando calculada a evolucdo da
composicdo do portfélio 6timo ao longo tempo, temos que, quanto menor € a varia¢do desta
composicao, melhor para o investidor. Para medir a magnitude das varia¢fes, criamos uma

métrica, a qual denominaremos de rugosidade R:

N
i=1

w;j € um numero real entre 0 e 1 (ou 0 e 100%), que traduz a porcentagem do ativo i

R =

N| =

M-1
Z |wi,j+1 - wi,j|
j=1

presente no portfdlio 6timo do dia j. Na expressdo da rugosidade acima, o portfélio é composto
por um total de N acGes e o periodo da anélise é de M dias. A figura abaixo mostra a evolucao
dos w; j se aplicarmos 0 modelo classico de Markowitz ao longo dos 70 dias de negociagdo que
precedem 15 de maio de 2014, para um portfélio composto pelas 10 a¢des cujos simbolos estéo
a direita (bolsa NYSE):
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Figura 5 — Exemplo de evolugdo da composi¢éo do portfélio 6timo
A rugosidade ¢, portanto, uma medida da frequéncia e da amplitude dos “picos” da figura.
Para os 35 primeiros dias de negociacdo acima, em que os portfdlios estiveram relativamente
estaveis, R = 1.04. Para os 35 dias finais, onde houve mais instabilidade na composicdo, a

medida de rugosidade cresceu 45%, atingindo R = 1.51.

2.6. Desempenho

Para o calculo do desempenho, utilizaremos o retorno tradicional R*¢. Fa-lo-emos para
poder comparar com outros investimentos, que sdo expressos desta forma, como o retorno da
poupanca. No entanto, removeremos por simplicidade o sobrescrito trad e adicionaremos 0s
indices i e j, correspondendo ao ativo i e ao dia j:

Py Py 4

ij =
Pij 1

Na formula acima, P;; corresponde ao preco do ativo i no dia j.

Para medir o desempenho do modelos, calculamos primeiramente os desempenhos em cada
dia. Definimos o desempenho no dia j, d;, como a média dos retornos dos ativos neste dia,

ponderados pela parcela de investimento em cada uma:
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N
d] =1 +Zw,~,]- ' Ri,]'
i=1

Em seguida, compomos estes desempenhos ao longo do tempo. Definimos d; como o

produto dos desempenhos de todos os dias anteriores até o presente dia, para simular o que

aconteceria se estivessemos de fato investindo seguidamente na bolsa de valores:

J

d) = ﬂdk ~1

k=1

Na expressao dos d;, somamos 1 aos r;; para evitar que haja algum d; igual a zero, o que
tornaria todos os d; subsequentes também iguais a zero, dada o produtorio acima. Por fim, a

medida de desempenho D que propomos € a soma de todos os d;:

M
D= Zd]’-
j=1

Como M é uma constante quando comparamos 0s modelos, esta medida de desempenho
pode ser interpretada como a média dos desempenhos ao longo do tempo (multiplicada por M,
naturalmente). Podemos, alternativamente, visualizar D como a area sob a curva formada pelos

d; ao longo do tempo.

Um exemplo de tal curva, quando utilizamos o modelo de otimizacdo classico de
Markowitz ao longo dos 70 dias de negociacdo que precedem 15 de maio de 2014, com as

mesmos ativos que foram listadas na Figura 1, é mostrada abaixo:
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Figura 6 — A curva formada pelos d]’-.

Subtraimos 1 na expressdo dos d; para garantir que esta integral seja de fato negativa

quando o desempenho é predominantemente negativo ao longo do tempo. Se néo o fizéssemos,
a curva acima estaria deslocada verticalmente, gerando possivelmente medidas de desempenho

positivas em casos onde esta seria intuitivamente negativa.

Em detrimento de calcular o desempenho apenas com base no valor final do portfélio,
como é comum em investimentos quotidianos, a medida proposta utiliza todos os valores
intermediarios. Fizemos deliberadamente esta escolha, para poder diferenciar o desempenho de
portfélios que possuam o mesmo valor no ultimo dia da analise, porém com trajetorias

diferentes ao longo do caminho.

2.7. Algoritmos Evolutivos

Segundo Mitchell (1996), algoritmos evolutivos sdo mecanismos heuristicos que
mimetizam processos bioldgicos para resolver problemas matematicos. Pertencentes ao campo
de Inteligéncia Artificial da Ciéncia da Computacdo, estes métodos sdo geralmente usados para

gerar solugdes uteis — possivelmente 6timas — para problemas de busca ou otimizacao.

Dentre 0S processos naturais que sdo mimetizados matematicamente, encontramos
reproducdo, heranca genética, mutacdo, selecdo e crossover. Inicialmente, geramos
aleatoriamente um conjunto de possiveis solugdes para o problema, que compordo uma
“populag¢ao”. Em seguida, esta populacdo sera avaliada segundo uma fungdo de fitness (ou

aptidao), que determinara quais sdo as melhores candidatas. A proxima populagdo sera entdo
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obtida através dos processos citados acima, combinando as melhores solucgdes (reproducéo),
passando caracteristicas para os “filhos” (heranga genética), alterando as solucdes

aleatoriamente (mutacéo), etc.

Segundo pontos levantados por Mitchell (1996), Goldberg (1989) e Roudier (2007), ha
pontos favoraveis e desfavoraveis na utilizacao de algoritmos evolutivos. Em particular, € um
método excelente para avaliar fungbes descontinuas ou ndo-lineares, para as quais 0os métodos
convencionais de otimizag&o s&o ineficazes ou mesmo inaplicaveis, ou fungdes “caixa-preta”,
como € o caso da que estudaremos neste artigo. Por outro lado, estes métodos tém o viés de nao

garantir a otimalidade da solucédo fornecida, dada a sua natureza heuristica.

2.8. Redes Neurais

2.8.1 Histdria

Esta secdo é baseada em Schmidhuber et al. (2012). No caso de classificagdo ndo-linear,
0s métodos mais simples de aprendizagem automatica e inteligéncia artificial sdo pouco
eficazes, devido a, por exemplo, problemas de sobreajuste (overfitting). E frequentemente o

caso da regressao logistica, um dos modelos mais simples de classificacdo

Para contornar este problema nas aplicagdes mais complexas, diversas alternativas foram
propostas ao longo do tempo, tais que regularizacdo ou reducdo do numero de variaveis
explanatorias, porém poucas destas alternativas sdo capazes de aumentar significativamente a

eficiéncia destes métodos.

Uma alternativa mais poderosa para este tipo de problema sdo redes neurais, também
chamadas de redes neurais artificiais. Este método de aprendizagem é uma tentativa de simular
o funcionamento do cérebro humano. Apesar de ter sido amplamente popular na década de 80,
a popularidade diminuiu préximo do ano 2000. Recentemente, no entanto, houve um aumento
significativo do uso de redes neurais, gragas ao advento de novas técnicas mais poderosas e

computacionalmente eficazes.

2.8.2 Conceito
Como citado acima, redes neurais simulam o funcionamento do cérebro humano — mais
especificamente, dos neurénios que compdem o sistema nervoso humano. A figura abaixo

indica os principais componentes dos neurénios humanos:
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Membrana celular

Nucleo celular

Terminacgdes sinapticas

Axonio

Dendritos Soma

Figura 7 — Esquema de um neur6nio humano.

Os dendritos funcionam como fios de entrada de dados (input wires) e 0s axénios como
fios de saida de dados (output wires). Juntamente com 0s outros componentes, os dendritos e
0s axonios permitem que os neurdnios funcionem como unidades relativamente autbnomas de
processamento, que se comunicam com 0S outros neurbnios através do envio de impulsos
elétricos. As terminacdes sinapticas sdo responsaveis pela transmissdo destes impulsos

elétricos.

2.8.3 Modelo
Definimos o vetor x como o vetor entrada e o vetor 8 como um vetor de parametros. Por

exemplo, para um modelo com 3 variaveis de entrada, x e 8 seriam:

X0 00

_ X1 _ 01
X = X2 0= 02
X3 03

Onde x, é sempre igual a 1, comumente chamado de “bias unit”. Definimos também a

fungdo “sigmoide” ou “logistica” hg(x) de acordo com a férmula abaixo:

1

_ T —
ho(x) = g(67x) =

O comportamento desta fungdo nos permitird classificar binariamente as entradas. O

gréafico abaixo ilustra 0 comportamento da fungéo:

1

0.5

1 o 1 1
©

-6 -4 -2 o] 2 4 6

Figura 8 — Grafico da fungio sigmoide ou “logistica”
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Para valores negativos de x, a funcdo retorna valores abaixo de 0.5. Inversamente, para
valores positivos de x, a fungéo retorna valores acima de 0.5. Além disso, a funcdo sigmoide
possui duas assintotas horizontais, nas ordenadas 0 e 1. Esta propriedade nos permite classificar
a entrada em duas categorias, uma delas correspondendo aos valores de hg(x) abaixo de 0.5 e
a outra correspondendo aos valores de hg(x) acima de 0.5. Além de classificar os valores de x,
a funcdo sigmoide também permite quantificar a classificacdo, isto &, verificar qual a

probabilidade de que cada uma das classificagdes seja verdadeira.

Suponha que estejamos tentando classificar e-mails em “spam” e “ndo-spam”. Apos
parametrizarmos corretamente o modelo, para cada e-mail — correspondente a um certo vetor x
—teremos um valor de hg(x). Neste caso, podemos definir o modelo de tal forma que os valores
de hy(x) correspondam a probabilidade de que o e-mail seja spam. Desta maneira, se hg(x)
for maior do que 0.5, a probabilidade de que este e-mail seja spam é maior do que 50% e

portanto classificamo-lo como spam. Sendo, classificamo-lo como n&o-spam.

2.8.4 Representacéo
Abaixo, vemos uma possivel representacdo de uma rede neural:

Figura 9 — Representacdo de uma rede neural

e O vetor x é chamado de “camada de entrada” (input layer) ou simplesmente “camada
1”.

e O vetor a corresponde a “camada escondida” (hidden layer) ou simplesmente “camada
27,

e O resultado final, obtido através da funcdo hgy(x), ¢ chamado de “camada de saida”
(output layer) ou simplesmente “camada 3.

e Todas as camadas que estiverem entre a entrada e a saida sdo chamadas de “escondidas”.

e Como o valor de xg € sempre igual a 1, ndo costumamaos representa-lo no modelo.

2.8.5 Arquitetura
Chamamos de arquitetura o conjunto de camadas de uma rede neural. Por exemplo, a figura

a seguir representa uma rede neural com uma camada adicional em relacéo a figura anterior.
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> — he(x)

Camada 4

Camada 3
Camadal Camada?2

Figura 10 — Arquitetura de uma rede neural

Neste caso, 0 vetor x corresponde novamente a camada 1, porém a saida corresponde a
camada 4. Adicionalmente, temos duas camadas escondidas, correspondentes respectivamente
aos vetores tri e bidimensionais (camadas 2 e 3). Recomenda-se que as camadas escondidas
tenham um ndmero de unidades da mesma ordem de grandeza que as unidades de entrada.
Quanto mais camadas forem adicionadas, mais complexas ficam as possibilidades de
aprendizado. Quanto a nomenclatura, denominamos redes neurais ndo-lineares auto-regressivas
(NAR) as redes que utilizarem a série historica de um certo dado para tentar prever o proximo

dado desta série. Esta sera o tipo de rede neural que utilizaremos neste trabalho.

2.8.6 Funcéo custo

Definimos “fung¢ao custo” como um indicador da qualidade do aprendizado. Quanto menor
o valor da fungdo, mais proximos estamos de um aprendizado perfeito. Portanto, para
parametrizar o modelo, procederemos a minimizacgédo da funcéo custo J, dada, no caso de uma

rede neural, por:

10 = ;[Z S 3010g (ho(x0)), + (1~ 3" tog (1~ (e(x?)) )

i=1 k=1
2 L-1 S1 Si+1 )
e O]
o (eﬁ )
1=1 i=1 j=1

Onde:

e L e onumero de camadas na rede.
e s; € 0 numero de unidades da camada I, descontando a unidade que é sempre 1.
e K é o numero de classes, no caso de um classificador multi-classe (s; = K).

S1

2
A - R . o .
e Otermo ﬁZfzf iy X (0](?) corresponde & regularizacdo do modelo, para evitar

sobreajuste (overfitting).
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3. ESTUDO COMPARATIVO DE MODELOS DE OTIMIZACAO DE PORTFOLIO
SELECIONADOS

3.1. Metodologia

O estudo comparativo deste capitulo estd organizado em diversas etapas. Inicialmente,
apresentaremos seis fatores que, quando combinados, determinam o funcionamento dos
modelos de otimizacdo que estudaremos. Estes fatores possuem naturezas diversas; alguns
correspondem ao tipo de dados que serdo utilizados, outros se referem a incorporacdo de

incertezas no modelo e, ainda, alguns se referem aos métodos de calculos dos parametros.

Apresentados estes fatores, prosseguiremos a definicdo dos modelos em si. Naturalmente,
cada modelo ¢ fruto de uma combinacao especifica dos seis fatores supracitados. Em seguida,
realizaremos uma analise destes modelos, do ponto de vista das métricas de rugosidade e
desempenho definidas no Capitulo 2. Esta analise revelara qual o modelo com melhor

desempenho, sob a nossa perspectiva.

Por fim, a Gltima etapa consistira da utilizacdo de algoritmos evolutivos para otimizar dois
dos fatores, no caso do modelo de melhor desempenho. Veremos que esta abordagem trara

vantagens significativas em termos de retorno ao longo do tempo.

3.2. Fatores considerados nos modelos

Trés dos seis fatores que definem os modelos sdo “externos” a eles, a0 passo que estdo
relacionados apenas ao seu modo de utilizagdo. Tais fatores serdo doravante denominados de
extrinsecos. Os outros trés fatores sdo “internos” aos modelos, dado que estdo diretamente
relacionados as hipéteses e modelos matematicos utilizados no seu funcionamento. Estes serdo

chamadas de estruturais.

3.2.1 Fatores extrinsecos
Enunciaremos primeiramente os fatores extrinsecos ao modelo, pois sdo de mais facil

compreenséo.
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A. Tipo de janela (movel ou fixa).

Refere-se a maneira como atualizamos a base de dados quando da chegada de novas
informacdes. Se excluirmos a informacdo mais antiga em detrimento da mais nova,
denominamos o método como “janela movel”, pois o intervalo de dados analisados estd se
alterando no tempo. Se adicionarmos a nova informagdo sem excluir a mais antiga,

denominamos “janela fixa”.

B. Perfil do investidor (conservador ou arrojado).

O primeiro perfil (conservador) baseara as suas decisdes em um amplo intervalo de tempo.
No caso de janela fixa, 0 nUmero minimo de dias de negociacdo considerados sera de 400,
correspondendo a cerca de 1 ano e 7 meses. No caso de janela mével, a quantidade de dias
considerados sera igualmente 400.

O segundo perfil (arrojado), por sua vez, fundamentara as decisdes em um intervalo mais
curto. O nimero minimo de dias considerados, no caso de janela fixa, sera de 30, que é também

o valor constante de dias utilizado no caso de janela movel.

Os perfis diferem também quanto ao retorno esperado. Como apresentado no Capitulo 2,
0s modelos de otimizacdo de portfolio geram uma “fronteira eficiente”, na qual todos os pontos
correspondem as melhores combinacfes de risco e retorno, isto é, cada ponto da fronteira
corresponde ao portfdlio de menor risco para um dado retorno ou, inversamente, ao portfélio
de maior retorno para um dado risco. No entanto, quando geramos esta fronteira, devemos

escolher apenas um destes portfélios.

Esta escolha diferira de acordo com o perfil do investidor. Escolhemos, no caso do perfil
conservador, o portfélio cujo retorno esperado anual seja de 12% e, para o perfil arrojado, o
aquele com 25% de retorno anual.

Salientamos que estes perfis foram escolhidos com base em valores reais praticados

por analistas de investimento.

C. Informacéo utilizada (low, close ou high).

Os modelos cléssicos de otimizago de portfélios costumam utilizar o preco de fechamento
do ativo para todos os calculos (retorno diario, desempenho do ativo, etc.). Neste artigo, sera
testado qual o efeito de se utilizar o pre¢co mais baixo (low) ou o mais alto (high) que o ativo

atingiu em um determinado dia, no lugar do preco de fechamento.
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3.2.2 Fatores estruturais
Os fatores estruturais, muito mais importantes de um ponto de vista conceitual do que 0s

extrinsecos, serdo o grande foco das analises.

D. Método de calculo dos retornos esperados (média histdrica ou rede neural).
Estudaremos duas opcdes quanto ao calculo do retorno esperado de cada ativo ao longo do
tempo. Primeiramente, utilizaremos a media dos retornos historicos, da maneira que

apresentamos para 0 modelo de Markowitz tradicional no Capitulo 2.

Alternativamente, utilizaremos redes neurais ndo-lineares auto-regressivas (NAR) para
efetuar este calculo (conferir Capitulo 2). Para cada ativo, uma sucessdo de redes neurais foi
criada: a cada 42 dias de negociacao (2 meses em dias corridos), criamos uma rede nova levando
em consideragdo os dados antigos conjuntamente com os novos dados que foram obtidos nestes
ultimos 42 dias. Esta nova rede substitui a anterior como modelo de previsdo dos retornos

futuros de cada ativo.
A arquitetura escolhida esta descrita abaixo:

Camada de entrada: como a rede é auto-regressiva, a entrada € a mesma que a saida.
Queremos prever o preco do ativo no dia seguinte, entdo a entrada consistird dos pregos
nos dias anteriores. Escolhemos basear a predi¢cdo nos precos ponderados dos 5 dias de
negociacdo precedentes. O peso dos 5 pre¢os é crescente, de acordo com quéo recentes

eles sejam.

Conjunto de treinamento: 599 exemplos na primeira rede, ocorrendo atualizacdo a
cada 42 dias de negociacéo, que equivalem a 1 bimestre do ano. Como realizamos 3400
previsdes, criamos um conjunto de 80 redes neurais para cada ativo, cada uma das quais
com complexidade e precisdo crescentes. Portanto, a Gltima rede criada possuia um
conjunto de dados com 3360 exemplos. Separamos sempre 70% dos dados para

treinamento, 15% para validacéo e 15% para os testes finais.

Camada escondida: uma Unica camada, com 10 unidades. Percebemos que a precisdo
da rede néo crescia com 0 aumento do nimero de unidades além de 10, nem com o

acréscimo do niimero de camadas.
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Camada de saida: vetor unidimensional, correspondente & previsao de preco para o dia

em questao.

A Figura abaixo mostra a representacdo no MATLAB da rede neural criada:

Hidden OQutput

Figura 11 — Representacdo MATLAB da rede neural

Exemplificamos abaixo as predi¢bes da rede neural para a acdo KO (Coca-Cola). A linha

azul corresponde aos precos reais; a linha vermelha, as predicdes da rede.

255 T T r r r U T

25

24.5

24

23.5

23

22.5

22 - .

r r r r r r
200 210 220 230 240 250 260

Figura 12 — Exemplo da capacidade de predicéo das redes neurais
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Como vemos, as redes séo muito precisas. No entanto, constataremos posteriormente que
outras caracteristicas da rede séo pouco interessantes do ponto de vista préatico, tornando pouco

eficiente a sua utilizacéo.

E. Medida de risco utilizada (variancia ou CVaR).

Conforme apresentamos no Capitulo 2, ha diversas medidas de risco presentes na literatura
académica. Em especial, destacamos a variancia, escolhida inicialmente por Markowitz (1952),
e 0 CVaR, proposto por Rockafellar e Uryasev (2000).

A variancia é, naturalmente, muito mais simples, em termos de céalculo e também de
compreensdo. O CVaR, por outro lado, requer a geracao de cenérios aleatorios, que rapidamente
se tornam custosos computacionalmente. Neste trabalho, fizemos a escolha de gerar 10000
cenarios aleatdrios com 95% de nivel de confianca, equivalentes a um programa de otimizagédo

com 10000 restricoes.

F. Incorporacéo do risco (Markowitz ou Bayes).
O modelo de Markowitz, tal qual apresentado no Capitulo 2, considera que todos os
parametros do modelo ndo possuam incertezas. Supde-se, portanto, que o vetor de retornos g e

a matriz de covariancias X sejam ambos exatos.

No entanto, esta hipo6tese é considerada muito fraca por diversos autores (FABOZZI, F. J.
et al., 2007). Dentre as diversas abordagens propostas para contornar este problema, ganharam
destague o modelo de otimizacdo robusta bayesiana e 0 modelo de Black-Litterman. Neste
trabalho, contraporemos o modelo classico de Markowitz a otimizacdo bayesiana, de maneira

a verificarmos o desempenho e a rugosidade de cada uma delas.

Utilizaremos o modelo proposto por Meucci (2005), com a variancia como medida de risco,

tal qual apresentamos no Capitulo 2.

3.3. Modelos estudados

Os seis fatores descritos acima geram um total de 72 combinagGes possiveis. Sendo
impraticavel estudar tal quantidade de combinagdes, restringimos o escopo deste trabalho a 48

delas.
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Dois fatores — o tipo de janela e o perfil do investidor — serdo tratados separadamente dos
demais. Enquanto os outros fatores sdo categoricos em vez de numeéricos, estes dois fatores se
referem diretamente a variaveis numericas: o retorno desejado e o tamanho do intervalo de
aquisicdo de dados. Esta caracteristica particular os torna passiveis de otimizacdo, justificando
esta separacdo. Desta maneira, temos quatro combinagGes possiveis para estes dois fatores:

1. Janela Fixa — Perfil Conservador
2. Janela Fixa — Perfil Arrojado

3. Janela Mével — Perfil Conservador
4

. Janela Movel — Perfil Arrojado.

Quanto ao restante das escolhas, definiremos abaixo 12 combinagfes. Referir-nos-emos
doravante a estas 12 combinagdes como “modelos”, conquanto a rigor elas ndo o sejam — afinal,
os unicos “modelos” de fato estudados sdo Markowitz e Bayes. Este sutil abuso de linguagem

simplificara a escrita e facilitard enormemente a compreensao.

Denominacéo do Informacdo  Calculodo  Medida de Incorporagéo do
modelo utilizada retorno risco risco no modelo
Markowitz (Close) Close Média Variancia Né&o - Markowitz
Markowitz (Low) Low Média Variancia N&o - Markowitz
Markowitz (High) High Média Variancia N&o - Markowitz
Bayes (Close) Close Media Variancia Sim - Bayes
Bayes (Low) Low Media Variancia Sim - Bayes
Bayes (High) High Média Variancia Sim - Bayes
CVaR (Close) Close Média CVaR N&o - Markowitz
CVaR (Low) Low Média CVaR Né&o - Markowitz
CVaR (High) High Média CVaR Né&o - Markowitz
Neural (Close) Close Rede neural Variancia Nao - Markowitz
Neural (Low) Low Rede neural Variancia Né&o - Markowitz
Neural (High) High Rede neural Variancia Né&o - Markowitz

Tabela 1 — Os 12 modelos estudados
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3.4. Detalhes Adicionais

O software utilizado é exclusivamente o MATLAB R2013b, em especial as caixas de
ferramenta de Financas e de Otimizacéo.

O portfélio serd composto pelas 10 a¢des da bolsa de Nova York (NYSE) abaixo:

- Coca-Cola (KO) - Wal-Mart (WMT) - ExxonMobil (XOM)
- Toyota Motors (TM) - Procter & Gamble (PG) - Pfizer (PFE)
- General Electric (GE) -T&T (T) - Citibank (C)

- J. P. Morgan (JPM)

Foram escolhidos ativos “blue chips” (com alta capitalizacdo de mercado). Além disso,
diversas industrias estdo representadas, para diversificar o portfolio e, assim, diminuir as

covariancias entre os ativos.

Mostramos abaixo a interface de utilizag&o desenvolvida:

MARKOWITZ REDE NEURAL

Janela—————— Perfil Risco — Critério de selegao— ] Rede Neural
|7 (@) Mdvel |7 (® Conservador |7 (®) Varidncia ® Retomno 0.12

(OCVaR | 095

() Fixa () Arrojade

(O) Sharpe | 0.06 ennio

Data Inicial Data Final — Informagao Unidades
dd/mm/yyyy dd/mmdyyyy M Dias ® Close

01/07/2012 15/05/2014 Poténcia ) High

) Low

Tamanho da janela Cédigos das agbes do portfolio BAYES

Se a janela for fixa. é o S -
tamanho minimo p por virg
‘ PG, TM, C, PFE, T, JPM, XOM, GE, WMT, KO ~ e JBayes
A4

Figura 13 — Interface de utilizacdo desenvolvida

Salientamos que, na interface, ha diversas funcionalidades que foram desenvolvidas
durante vers@es intermediarias do trabalho e abandonadas na versdo final. Um total de 1300
linhas de codigo foram escritas.
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3.5. Estudo de Rugosidade

3.5.1 Situacéo 1: 70 dias de negociacdo

A matriz das covariancias, X, é um parametro importante para a determinacao do portfélio
otimo. Verificaremos se os diferentes modelos se comportam diferentemente quando ocorrem
pequenas alteracGes na matriz X. Em outras palavras, mediremos a robustez de X em relagao

aos seus dados de entrada, através da medida de rugosidade explanada anteriormente.

A Tabela 2 mostra o valor de rugosidade caso os 12 diferentes modelos fossem utilizados

nos 70 dias de negociacdo que precedem o dia 15 de maio de 2014.

Janela e perfil

Modelo Colr\g\;\e/!ador Al\lilroc:ﬁdo Conzlexr?/ador ArFrIz)(;lado Média
Markowitz (Close) 2.55 9.62 1.25 1491 7.08
Markowitz (Low) 2.51 6.76 1.14 14.97 6.34
Markowitz (High) 2.23 8.53 1.18 14.66 6.65

Bayes (Close) 3.42 9.63 1.43 12.08 6.64
Bayes (Low) 3.38 6.62 1.37 10.70 5.51
Bayes (High) 3.30 8.33 1.16 9.74 5.64
CVaR (Close) 11.80 10.44 10.35 18.05 12.66
CVaR (Low) 11.18 7.75 9.84 16.86 11.41
CVaR (High) 10.78 9.01 8.57 15.51 10.97
Neural (Close) 20.91 22.54 21.02 19.94 21.10
Neural (Low) 20.00 23.76 20.24 20.90 21.23
Neural (High) 20.85 22.84 20.74 21.50 21.48

Média 941 12.15 8.19 15.82 11.39

Tabela 2 — Estudo de rugosidade dos modelos (situagéo 1)

Conduziremos a seguir uma Analise de Variancia (ANOVA, dois fatores, sem réplica, a =
5%) dos resultados acima, para verificar se podemos afirmar que as diferengas observadas séo

significativas:
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Fon'te Eia Soma de G_raus de Qua(,jrgdo Niv_e! E critico
variacdo  Quadrados Liberdade Medio descritivo

Linhas 1805.5067 11 164.1370  21.6256  0.0000 2.0933
Colunas 412.2090 3 137.4030  18.1033  0.0000 2.8916
Residual 250.4680 33 7.5899

Total 2468.1837 47

Tabela 3 — Tabela ANOVA para o estudo de rugosidade dos modelos (situacéo 1)

Os baixos valores de nivel descritivo indicam que, com mais de 99,99% de significancia,

existem diferencas de rugosidade de acordo com tanto os fatores das linhas quanto com os

das colunas. Repetimos o teste excluindo o CVaR e as redes neurais da anélise e passamos a

obter um nivel descritivo de 58% para as linhas, mantendo o valor baixo para as colunas,

indicando que eles eram os gerador da diferenca entre as linhas.

Concluimos que:

Os modelos com CVaR e redes neurais sdo significativamente mais rugosos do
que Markowitz e Bayes.
O perfil conservador, independentemente do tipo de janela usada, possui
rugosidade menor do que o perfil arrojado.
Otimizacdo bayesiana de fato diminui a rugosidade dos portfolios, justificando a
denominagdo “otimiza¢do robusta”. Nos modelos acima, had trés pares que
diferem apenas quanto a incorporacao do risco. A saber:

o Markowitz (Close) e Bayes (Close)

e Markowitz (Low) e Bayes (Low)

e Markowitz (High) e Bayes (High)
Em todos os pares, temos uma média de rugosidade menor para 0 modelo que usa

otimizagdo bayesiana, indicando que esta seja de fato mais robusta.

llustrativamente, providenciamos abaixo figuras que mostram as diferencas de rugosidade

entre os quatro modelos béasicos (Markowitz, Bayes, CVaR e Neural, usando close como

informacdo, perfil conservador, janela movel):
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A composicao segundo o
modelo cléssico de Markowitz é
bem estavel ao longo do tempo.

Neste intervalo especifico, ela
foi levemente mais estavel do
que com otimizacdo bayesiana.

A otimizacdo bayesiana, por ser
robusta e incorporar as
incertezas, € muito estavel ao
longo do tempo.

Como veremos a seguir, ela é, na
média, um pouco mais estavel
do que o Markowitz classico.

A otimizacéo com o0 CVaR, além
de demandar um tempo
computacional extremamente
longo, é muito pouco estavel.

Podemos notar as “rugosidades”
na figura ao lado.

A otimizacao atraveés de redes
neurais foi ainda mais rugosa do
que o CVaR.

Veremos que esta é a
desvantagem das redes, aos
passos que o desempenho
costuma ser muito bom.

Figura 14 — Variacao da composi¢do dos portfdlios segundo o modelo
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3.5.2 Situacéo 2: 3400 dias de negociacéo

Os resultados acima sdo relativos a um periodo de negociacdo de apenas 70 dias.
Realizaremos a seguir um estudo para um periodo de 3400 dias de negociacdo, que se estende
de 6 de novembro de 2000 a 15 de maio de 2014.

Nos nossos testes, os modelos que utilizam o CVaR tiveram, em média um tempo de
calculo 38 vezes maior do que o modelo classico de Markowitz. Por comparacdo, os modelos
com rede neural demoram 20% a mais do que Markowitz, ao passo que otimizacao bayesiana
toma um tempo 80% maior. Dada a alta rugosidade e o altissimo custo computacional,
decidimos excluir o CVaR da analise de 3400 dias de negociacdo. Relembramos que o tempo
de célculo é decorrente da criacdo de 10000 cenarios aleatorios, correspondentes em seguida a

resolucé@o de um problema de otimizacdo com 10000 restrigdes.

A tabela abaixo mostra os resultados nesta segunda situacao, para os outros nove modelos:

Janela e perfil

Modelo Movel - Mév_el - Fixa - Fixfa - Média
Conservador Arrojado Conservador Arrojado

Markowitz (Close) 208 618 100 73 250
Markowitz (Low) 191 559 82 71 226
Markowitz (High) 186 558 94 75 228
Bayes (Close) 191 581 83 58 228
Bayes (Low) 166 529 87 58 210
Bayes (High) 170 521 76 52 205
Neural (Close) 1082 1243 1041 1120 1121
Neural (Low) 1069 1275 1046 1117 1127
Neural (High) 1081 1300 1060 1128 1142
Média 483 798 408 417 526

Tabela 4 — Estudo de rugosidade dos modelos (situacéo 2)
Analogamente ao que fizemos anteriormente, procedemos com uma analise de variancia
(dois fatores, sem réplica). Obtemos niveis descritivos menores do que 10710 para as linhas e

para as colunas, indicando que ambas sao influentes sobre a rugosidade dos modelos.
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3.6. Estudo de Desempenho

3.6.1 Situacgdo 1: 70 dias de negociagdo
Realizamos a seguir a analise de desempenho dos modelos. Numa primeira situacgéo,
faremos novamente observacdes correspondentes aos 70 dias de negociacdo que precedem 15

de maio de 2014. A Tabela 5 apresenta os resultados:

Janela e perfil

Moével - Moével - Fixa - Fixa -

Modelo Conservador Arrojado Conservador Arrojado Média
Markowitz (Close) 2.48 3.39 2.79 -2.13 1.63
Markowitz (Low) 2.53 3.30 2.91 -0.84 1.97
Markowitz (High) 2.51 3.08 2.80 -1.85 1.64

Bayes (Close) 2.58 2.82 2.76 -0.66 1.87
Bayes (Low) 2.37 3.31 2.81 -0.57 1.98
Bayes (High) 2.58 2.82 2.76 -0.66 1.87
CVaR (Close) 3.15 3.51 2.62 -1.16 2.03
CVaR (Low) 2.54 3.06 2.54 -0.79 1.84
CVaR (High) 2.26 2.80 3.02 -1.99 1.52
Neural (Close) 4.05 4.46 4.01 4.55 4.27
Neural (Low) 4.09 4.06 4.09 3.85 4.02
Neural (High) 4.23 4.81 4.21 4.64 4.47

Média 2.95 3.45 3.11 0.20 2.43

Tabela 5 — Estudo do desempenho dos modelos (situacdo 1)

Realizamos novamente uma analise de variancia (dois fatores, sem réplica, a« = 5%).
Concluimos, novamente, que tanto as linhas quanto as colunas sdo influentes sobre o

desempenho da otimizacdo de portfolio.

Fonte da Somade Grausde Quadrado Nivel F critico
variagdo  Quadrados Liberdade  Médio descritivo

Linhas 54.9374 11 4.9943 5.0745 0.0001 2.0933
Colunas 81.0408 3 27.0136  27.4474 0.0000 2.8916
Residual 32.4784 33 0.9842

Total 168.4566 47

Tabela 6 — Tabela ANOVA para o estudo do desempenho dos modelos (situacéo 1)
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llustramos abaixo o desempenho dos métodos basicos (close como informacgéo) ao longo
do tempo, perfil arrojado e janela movel.
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Figura 15 — Desempenho ao longo do tempo segundo os modelos
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Neste intervalo especifico,
Markowitz teve dificuldades de
acompanhar o desempenho geral
da bolsa.

No entanto, préximo do fim,
notamos uma boa recuperacao.

A otimizacdo bayesiana teve
desempenhos muito similares
aos de Markowitz.

Percebemos algumas diferencas
sutis, sobretudo do dia 45 em
diante.

A otimizagdo com o CVaR foi
muito similar as duas acima.

Notamos sutis diferencas em
relacdo ao Markowitz nos
ultimos 10 dias do periodo.

Similarmente ao Markowitz e ao
Bayes, 0 modelo com Rede
Neural teve alguma dificuldade
no comego, porém ultrapassou o
indice da bolsa no fim do
periodo.
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3.6.2 Situacgdo 2: 3400 dias de negociacéo

Analogamente ao que fizemos com a analise de rugosidade, repetimos o estudo para o
intervalo de 3400 dias de negociagdo (13 anos) que precede 15 de maio de 2014. Excluimos,
novamente, os modelos que utilizam o CVaR como medida de risco, devido as razdes ja

mencionadas. Obtemos os resultados a seguir:

Janela e perfil

Modelo Movel - Mév_el - Fixa - Fixg - Média
Conservador Arrojado Conservador Arrojado

Markowitz (Close) 982 -1680 -1934 -367 -750
Markowitz (Low) 356 -1627 -1408 -667 -836
Markowitz (High) 161 -1493 -1568 -704 -901
Bayes (Close) 516 -1512 -1122 -332 -613
Bayes (Low) 466 -1492 -1105 -197 -582
Bayes (High) 357 -1257 -1197 -318 -604
Neural (Close) 969 101 1116 743 732
Neural (Low) 547 -172 1022 682 520
Neural (High) 378 -111 682 412 340
Média 526 -1027 -613 -83 -299

Tabela 7 — Estudo do desempenho dos modelos (situaco 2)

Ao repetir a analise de variancia (dois fatores, sem réplica) chegamos exatamente as
mesmas conclusdes que na situacdo 1: tanto as linhas quanto as colunas séo influentes sobre o

desempenho da otimizacdo de portfolio.

Notamos também que os desempenhos sdo quase todos negativos, exceto com a

combinacdo Janela Movel — Perfil Conservador e com a utilizagdo de redes neurais.

3.7. Estudo da razdo Desempenho/Rugosidade

Os resultados acima foram interessantes, porém inconclusivos. Analisar rugosidade e
desempenho separadamente traz diversas limitacdes, ja que as métricas devem ser consideradas

conjuntamente quando de uma comparagdo holistica entre modelos de otimizago.
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Tendo em vista este fato, propusemos uma nova meétrica, que sera a razdo entre o
desempenho e a rugosidade. Esta métrica, de fécil interpretagdo, traduz quanto de desempenho

é trazido, em média, por cada variagdo na composicdo do portfolio.

A literatura académica vem tratando deste balanco ha bastante tempo. Skaf e Boyd (2009),
entre outros autores, propuseram um modelo de otimizacédo de portfélio considerando os custos
de transacdo j& na funcdo objetivo. O proprio MATLAB possui em sua biblioteca um modelo
desta natureza. A raz&o pela qual optamos por ndo considerar custos de transacdo é puramente
computacional: considerar tais restricbes torna o tempo necessario para as andlises
substancialmente maior, dificultando analises tdo amplas quanto as que este trabalho se prop6s
a fazer. Alternativamente, optamos por estudar a razdo desempenho/rugosidade. Esta solucdo
nos permitiu realizar comparacdes entre um numero consideravel (48) de modelos e,

simultaneamente, verificar o impacto das mudangas na composicéo do portfélio.

3.7.1 Situacdo 1: 70 dias de negociacio
Os resultados da analise para a primeira situagcdo se encontram resumidos na Tabela 8:

Janela e perfil

Mobvel - Mobvel - Fixa - Fixa -

Modelo Conservador Arrojado Conservador Arrojado Média
Markowitz (Close) 0.97 0.35 2.24 -0.14 0.86
Markowitz (Low) 1.01 0.49 2.55 -0.06 1.00
Markowitz (High) 1.13 0.36 2.37 -0.13 0.93

Bayes (Close) 0.75 0.29 1.93 -0.05 0.73
Bayes (Low) 0.70 0.50 2.06 -0.05 0.80

Bayes (High) 0.78 0.34 2.37 -0.07 0.86

CVaR (Close) 0.27 0.34 0.25 -0.06 0.20
CVaR (Low) 0.23 0.39 0.26 -0.05 0.21

CVaR (High) 0.21 0.31 0.35 -0.13 0.19
Neural (Close) 0.19 0.20 0.19 0.23 0.20
Neural (Low) 0.20 0.17 0.20 0.18 0.19
Neural (High) 0.20 0.21 0.20 0.22 0.21
Média 0.55 0.33 1.25 -0.01 0.53

Tabela 8 — Razdo desempenho/rugosidade (situacédo 1)
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Notamos claramente que, quando as métricas sdo consideradas conjuntamente, Markowitz

e Bayes tém resultados significativamente melhores do que CVaR e Neural.

3.7.2 Situacdo 2: 3400 dias de negociacéo
Este sera o teste final, responsavel por decidir qual modelo sera utilizado para otimizar a

matriz energética brasileira:

Janela e perfil

Modelo Movel - Mév_el - Fixa - Fixg - Média
Conservador Arrojado Conservador Arrojado

Markowitz (Close) 4.7 -2.7 -19.3 -5.1 -5.6
Markowitz (Low) 1.9 -2.9 -17.2 -94 -6.9
Markowitz (High) 0.9 -2.7 -16.6 -9.4 -7.0
Bayes (Close) 2.7 -2.6 -13.5 -5.7 -4.8
Bayes (Low) 2.8 -2.8 -12.8 -3.4 -4.0
Bayes (High) 2.1 -2.4 -15.7 -6.1 -5.5
Neural (Close) 0.9 0.1 1.1 0.7 0.7
Neural (Low) 0.5 -0.1 1.0 0.6 0.5
Neural (High) 0.3 -0.1 0.6 0.4 0.3
Média 1.9 -1.8 -10.3 -4.2 -3.6

Tabela 9 — Razdo desempenho/rugosidade (situagao 2)

Discutamos primeiramente as combinacdes de janela e perfil. Exceto para Janela Fixa e
Perfil Conservador, todas as combinagdes tém médias negativas. Realizamos um teste ANOVA
(dois fatores, sem réplica, @« = 5%) para verificar se as diferencas sdo estatisticamente

significativas, de acordo com a Tabela 10:

Fonte da Soma de Grausde  Quadrado Nivel

variagdo  Quadrados Liberdade Médio descritivo Fcritico
Linhas 327.5896 8 40.9487 2.3312  0.0520 2.3551
Colunas 700.7483 3 233.5828  13.2980  0.0000 3.0088
Residual 421.5664 24 17.5653
Total 1449.9043 35

Tabela 10 — Tabela ANOVA para desempenho/rugosidade (situacéo 1)
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Concluimos que ha diferengas entre as colunas. Portanto, na busca pelo melhor modelo de
otimizag&o, consideraremos exclusivamente a combinag&o Janela Mdvel — Perfil Conservador,

por ser a Unica de média positiva.

Em seguida, passemos a discussdao dos modelos (linhas). Notamos que todos os que
utilizam redes neurais, embora evitem desempenhos negativos para quase quaisquer
combinacdes de janela e perfil, tém resultados bastante aquém do esperado. E notavel que a
média dos modelos com redes neurais € abaixo da dos modelos Markowitz e Bayes;

consequentemente, desconsidera-los-emos.

Resta-nos a dificil escolha entre o modelo classico de Markowitz e o modelo de otimizacdo
robusta bayesiano. Se analisamos as médias, continuamos num impasse, pois elas sdo iguais a

dois algarismos significativos.

Optaremos, nestas condicdes, pelo modelo com maior valor para a razédo
desempenho/rugosidade: Markowitz (Close). A razdo é, no minimo, 70% maior do que a de
qualquer outro modelo. Interessantemente, este € 0 modelo tradicional desenvolvido em 1952
por Markowitz, sem nenhuma das melhorias que analisamos, que foram propostas pela
literatura académica ao longo de décadas. Segundo os resultados de nossos estudos, as
propostas académicas, embora capazes de melhorar pontos especificos do modelo, séo

incapazes de melhorar o balango entre desempenho e rugosidade.

A nossa interpretacdo € que as redes neurais tém um poder de predi¢do tdo grande que as
varia¢fes na composicdo no portfélio se tornam bruscas, causando instabilidades ao longo do
tempo. Isto justifica o fato de os desempenhos serem muitas vezes excelentes, porém

acompanhados de altissima rugosidade.

No caso da otimizacdo bayesiana, a interpretacdo é precisamente a oposta. Este modelo €
extremamente robusto, com uma composicdo muito estavel ao longo do tempo. Entretanto, esta
robustez revela uma dificuldade de acompanhar as mudangas no mercado de capitais, de tal

forma que, a longo prazo, o desempenho deixa fortemente a desejar.
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Neste contexto, Markowitz mantém o seu papel como pilar unificador dos modelos, capaz
de manter consistentemente um balanco quase perfeito entre qualidade de predicéo — traduzida

em desempenho — e robustez do portfdlio — traduzida em rugosidade.

Em conclusdo, a se¢do seguinte deste trabalho focara em trabalhar para tornar ainda mais
poderosas as caracteristicas do modelo de otimizacdo de portfélio com melhores resultados, de

acordo com as nossas métricas.

3.8. Aprimoramento do modelo de Markowitz através de algoritmos evolutivos

O modelo de melhor desempenho do estudo anterior foi Markowitz (Close), combinado
com Janela Mdvel e Perfil Conservador. Nesta secdo, aprimoraremos o desempenho desta

combinacéo atraves de algoritmos evolutivos.

Como haviamos indicado no inicio deste capitulo, separamos os fatores Janela e Perfil
porque eles eram numéricos e ndo categoéricos. Este fato € importantissimo, pois nos permitira

utilizar as poderosas técnicas conhecidas como algoritmos evolutivos para otimiza-los.

A Janela e o Perfil definem dois valores numéricos: o tamanho da janela e o retorno
desejado (que, relembramaos, é o critério de escolha do portfélio 6timo). Para perfil conservador,
o tamanho da janela era de 400 dias e o retorno desejado era de 12% ao ano. Neste contexto, o
nosso atual objetivo € encontrar os valores de tamanho de janela e de retorno desejado que
maximizem o potencial de geracdo de valor do modelo. Em outras palavras, queremos encontrar
a combinacdo de valores que ird maximizar a nossa medida de desempenho ao longo dos 13

anos de negociacdo que estamos estudando.

Para fazé-lo, separamos os dados em dois conjuntos, tal qual sugerido pela revisdo
bibliogréfica (conferir Capitulo 2). Extraimos da bolsa de valores americanas dados relativos a
um periodo total de 4000 dias de negociacao e separamos cerca de 20% para rodar o algoritmo
de otimizacdo. Os dias restantes (3400) serdo o conjunto onde verificaremos a qualidade da
nossa otimizacdo. Relembramos que essa separacao do conjunto de dados é recomendada para
evitar “overfitting”, isto é, que a nossa otimizacao seja excelente, porém pouco generalizavel

para conjuntos de dados diferentes daqueles nos quais realizamos a otimizacao.

Utilizamos o algoritmo evolutivo presente na Optimization Toolbox do MATLAB 2013Db,

configurando-o de acordo com os parametros abaixo:
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Classificacéo Parametro Escolha
Populacéo Tamanho 20
Funcéo de criacao Dependente das restri¢des
Selecéo Funcéo de selecédo Uniforme estocastica
Reproducéo Elite count 1
Fracdo de crossover 0.8
Mutacéo Funcédo de mutacgéo Dependente das restri¢des
Crossover Funcéo de crossover Scattered
Migragéo Diregdo Forward
Fracéo 0.2
Intervalo 20
Restricbes Penalidade inicial 10
Fator de penalidade 100
Fitness scaling Scaling function Rank
Critérios de parada Geracoes 60
Limite de tempo Infinito
Limite de fitness - Infinito
Stall generations 50
Stall time limit Infinito
Tolerancia da funcao 1.00E-06
Toleréncia ndo-linear 1.00E-06

Tabela 11 — Parametros do algoritmo evolutivo (MATLAB).

Os parametros mais importantes sdo o tamanho da populagéo — 20 individuos — e 0 nimero
total de geracbes — 60 —, que compdem o numero total de individuos durante a otimizagdo —
1200. Obtivemos, ao final destas 60 gerac¢des, a combinagéo de 250 dias para a janela e 20%
para o retorno. Com estes pardmetros, o desempenho da otimizacdo passa a ser 4231.9150,
contra 981.7624 obtidos com os parametros anteriores — uma melhora substancial de 331%.

Curiosamente, 250 dias de negociacéo equivalem a, aproximadamente, 1 ano em dias corridos.
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Para verificar a validade destes resultados, recalculamos o desempenho e a rugosidade de
todos os modelos, de acordo com estes novos parametros. Sabemos que esta comparacdo ndo
é justa, dado que os valores foram otimizados especificamente para Markowitz (Close), porém

fa-la-emos ndo obstante este fato, para ndo fugir do escopo do trabalho. Obtemos a tabela

abaixo:

Modelo Desempenho Rugosidade Desempenho/Rugosidade
Markowitz (Close) 4232 291 14.6
Markowitz (Low) 2354 278 8.5
Markowitz (High) 2599 241 10.8

Bayes (Close) 2648 258 10.3
Bayes (Low) 1959 244 8.0
Bayes (High) 2048 233 8.8
Neural (Close) 989 1135 0.9
Neural (Low) 570 1122 0.5
Neural (High) 423 1128 0.4

Tabela 12 — Resultados da otimizagéo para todos os modelos

Verificamos, apesar das melhoras enormes em todos os modelos, que 0 modelo Markowitz
(Close) obteve, indiscutivelmente, os melhores resultados. Quanto & rugosidade, notamos
novamente que os modelos bayesianos sdo levemente menos rugosos (mais robustos) do que o

modelo classico de Markowitz. Comparamos abaixo os desempenhos (d;), para Markowitz

(Close), antes e apds a otimizacédo através de algoritmos evolutivos:
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Figura 16 — Desempenho de Markowitz antes da otimizacéo
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Figura 17 — Desempenho de Markowitz depois da otimizagdo

Observacdo: o atual indice geral da NYSE (linha vermelha) foi criado em 2004, dai a sua

auséncia no comeco do periodo de estudo.

Relembramos que a linha azul corresponde ao atual valor do portfélio, em maultiplos do
valor inicial investido. Em particular, vemos que, ao término dos 3400 dias, o valor do portfélio
foi multiplicado por 3.7: R$10.000 investidos em 2000 ter-se-iam tornado R$37.000 em 2014.

Consideramos esta melhora de desempenho de 331% como prova do poder de se utilizar

algoritmos evolutivos no contexto de otimizagao de portfélio.
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4. OTIMIZACAO DA MATRIZ ENERGETICA BRASILEIRA

4.1. Mercado de energia no Brasil

Iniciamos este capitulo com uma breve explanagdo da dindmica da geracdo de energia no
Brasil. A matriz energética brasileira esta fortemente concentrada em usinas hidrelétricas, com

mais de 70% da energia proveniente desta fonte em 2013 (Balanco Energético Nacional, 2014):

Matriz Energética Brasileira (2013)
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Figura 18 — Matriz energética brasileira (2013)

Notamos que a proporc¢éo de fontes renovaveis (excetuando hidrelétrica) é baixissima, com
8% advindo de usinas de incineracdo de biomassa e 1% de parques eolicos. Salientamos
também que, diferentemente de paises europeus, o Brasil nunca optou por fortalecer a producéo
por fontes nucleares, que ainda hoje é de apenas 2%. Quanto a energia térmica convencional
fossil, ela é considerada menos competitiva economicamente do que a hidrica ou as demais

fontes renovaveis (REGO, 2012), justificando a sua baixa contribuicao.

O drgdo governamental regulador deste mercado € a ANEEL (Agéncia Nacional de Energia
Elétrica), que organiza leil®es dos recursos naturais do pais que possam ser usados como fontes
de energia. Nestes leilGes, a empresa que atender as especificagdes do edital e der o menor lance
para 0 preco da energia comercializada, em R$/MWAh, recebera a concessdo da geracdo de

energia durante um periodo que costuma durar entre 30 e 40 anos.

Caso a empresa tenha mais capacidade de geracdo do que a que esta sendo fornecida ao
SIN (Sistema Elétrico Nacional), ela pode negociar a energia excedente no chamado mercado
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“spot”. Este mercado ¢ similar a bolsa de valores, no que tange a determinagdo de precos, que
ocorre com base em oferta e procura. Empresas com alto consumo de energia elétrica
(produtoras de aluminio ou aco, por exemplo) podem negociar a compra de energia elétrica no
mercado spot, diretamente com as usinas geradoras, como alternativa a utilizar exclusivamente

a energia elétrica proveniente do SIN.

4.2. Planejamento energético baseado em gestéo de portfélios

Modelos de analise de portfélio sdo amplamente utilizados por investidores para alocar 0s
recursos de maneira a garantir os retornos esperados, a despeito das condi¢cdes econémicas
(Roudier, 2007). Para fazé-lo, sé&o contrabalanceados os retornos e os riscos de cada ativo,
escolhendo-se a combinagdo que maximiza o retorno para um dado risco escolhido pelo
investidor ou, alternativamente, a que minimiza o risco para um dado retorno. Neste capitulo,
aplicaremos estes modelos a matriz energética do Brasil. Portanto, é necessario primeiramente

interpretar de forma correta o que representam os parametros do modelo neste novo contexto.

Enquanto os modelos de teoria de portfolios maximizam o retorno — dado um nivel de
risco —, o interessante, do ponto de vista de geracdo de energia, seria minimizar o custo. Este
fato € facilmente corrigido, pois hd uma relacdo muito simples entre o retorno e o custo de uma
fonte de energia. O retorno é a geracdo por unidade monetaria investida (MWh/R$), ao passo
que o custo é o investimento por unidade de energia produzida (R$/MWh). Portanto, para
podermos utilizar o modelo classico de maximizagdo do retorno, basta interpretarmos o retorno

como o inverso do custo e utilizarmos os dados relativos aos custos.

Conforme Awerbuch e Berger (2003), no caso de politicas energéticas, trés pontos sao
fundamentais a matriz energética de um pais: suprir a demanda, ter baixo custo e apresentar
poucos riscos. Quanto a demanda, os atuais modelos de previsdo sdo considerados
suficientemente precisos, dado que a evolugdo do consumo é sempre gradual, sem saltos
abruptos. Consequentemente, as politicas governamentais podem ser feitas com base nestas
previsdes e de acordo com um coeficiente de seguranca a ser estabelecido. Além disto, paises
podem, em caso de necessidade, aumentar a sua capacidade energética temporariamente,

atraves de importacédo ou de utilizacédo de fontes intermitentes.

Quanto aos outros dois aspectos fundamentais — custo e risco —, a analise se torna
substancialmente mais complexa. Como geracdo de energia envolve necessariamente a

realizacdo de escolhas entre tecnologias concorrentes, a comparacao de custos deve ser precisa
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e padronizada, de forma a mitigar distor¢des provenientes de cadeias de valor diferentes.
Adicionalmente, como cada tecnologia tém custos de implementagdo e operacdo, eficiéncia,
duracdo do ciclo de vida, pegada ecoldgica e fator de capacidade® distintos, devem ser

estabelecidas métricas comparativas abrangentes e multidimensionais.

Em relacdo aos riscos, estes se classificam essencialmente em duas classes: 0s riscos de
disfuncdo do fornecimento e os de aumentos inesperados dos custos. Como vimos
anteriormente, os riscos de disfuncdo do fornecimento podem ser reduzidos através do
coeficiente de seguranca em relacdo a demanda prevista e do uso eventual de fontes
intermitentes ou mesmo de importacdo. No entanto, o segundo tipo de risco, calculado através
da variancia dos custos ao longo do tempo, requer uma andlise profunda de diversos fatores,

qualitativos e quantitativos, macro e microeconémicos.

Segundo Awerbuch e Spencer (2007), flutuagdes no preco do petréleo sdo exemplos de
riscos relacionados a custos. Tais flutuacdes sdo capazes de reduzir a atividade econdmica de
todo um pais, no caso de na¢des altamente dependentes de importacao de petréleo. Até mesmo
pequenos aumentos percentuais podem trazer perdas significativas, como desemprego e
desaceleracdo da economia. Desta maneira, a reducdo deste tipo de risco é essencial para a

escolha de uma boa matriz energética.

Ao aplicarmos a teoria de portfélios a producdo de energia, determinamos portfélios que
tém baixo custo e que, simultaneamente, minimizam a exposicao de um pais a flutuacGes de
custos. Esta abordagem é completamente diferente da tradicional utilizada pelos governantes,
que consiste em focar exclusivamente na minimizacdo dos custos. A superioridade da
abordagem de portfdlios provém do fato de que € impossivel prever qual serd, daqui a 30 anos,

atecnologia mais barata. Consequentemente, focar exclusivamente em fontes de energia baratas

3 Fator de capacidade é a razdo entre a energia de fato produzida durante um certo periodo e a energia que
teria sido produzida se fosse possivel operar uma usina produtora de energia em capacidade nominal total durante
todo o periodo. Por exemplo, parques edlicos possuem fator de capacidade da ordem de 30%, dado que durante
aproximadamente 70% do ano os ventos sdo insuficientes para produzir quantidades significativas de energia.
Usinas nucleares tém fatores de capacidade que chegam a 90% (Electric Power Annual, 2009).
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é anélogo a investir durante 30 anos na acdo que teve o melhor desempenho no dia em que
tomamos a decisdao (AWERBUCH, 2000).

O mesmo ponto é levantado por Corey (1981). A otimizacdo da matriz energética de um
pais pressupde a escolha de tecnologias robustas, de forma a diminuir a susceptibilidade a
influéncia de fatores externos. Esta € uma caracteristica inerente aos modelos de otimizacéo de

portfdlio presentes na literatura académica e analisados nos capitulos anteriores deste trabalho.

Em suma, propomos a escolha de um “portfolio eficiente” — em termos do balanco entre
custos e riscos — no lugar dos tipicos e simplistas “portfolios de baixo custo”. Para fazé-lo,

utilizaremos o modelo tradicional de Markowitz, adaptado a este contexto:

= Fatores extrinsecos: Janela e perfil ndo tém sentido neste contexto. Utilizaremos
todos os dados da base, porque ela contém apenas 19 datas. A escolha de um unico
portfdlio da fronteira seré realizada de uma maneira discutida posteriormente, e ndo
simplisticamente selecionando um retorno alvo. A base BNEF possui trés cenarios
(baixo custo, alto custo e intermediario). Utilizamos o intermediério, ja que, nas
analises do Capitulo 3 foi a utilizacdo do preco Close que trouxe mais beneficios.

= Fatores estruturais: utilizaremos Markowitz tradicional, ou seja, calculado com a

média dos retornos e a variancia como risco e sem incorporar as incertezas.

Exemplificamos abaixo a fronteira eficiente (conferir Capitulo 2) calculada no contexto de
matrizes energeticas. No eixo das ordenadas, temos o retorno em KWh/R$, e, no eixo das

abscissas, o risco, também em KWh/R$.

Fronteira Eficiente para Matrizes Energéticas

6.4

Média dos retornos do portfélio (KWh/R$)
al
N
N\

a.8
4.6 l/

0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16
Desvio-padréao dos retornos do portfélio (KWh/R$)

Figura 19 — Fronteira eficiente no contexto de geracdo de energia
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4.3. Modelo de custos utilizado

Para obter os dados numéricos necessarios aos algoritmos de otimizagdo de portfélio,
faremos uso de um modelo denominado LCOE (“custo nivelado da energia”, do inglés levelized
cost of energy). Segundo Branker et al. (2011), o LCOE é uma métrica muito utilizada quando
da comparacdo entre diferentes formas de geracédo de energia, correspondendo conceitualmente
a razdo entre o custo total de um empreendimento (descontado no tempo) e o total de energia
elétrica que ele gerara (também descontado no tempo):

Custo total do empreendimento ao longo do ciclo de vida

LCOE =
Producdo total de energia ao longo do ciclo de vida

A seguinte formula é proposta para o calculo exato do LCOE:

n It +M+F,
=1 1+
E

n t
=171 + )t

LCOE =

Onde:

= ], s&o 0s gastos com investimentos no ano t.

»= M, séo os gastos com manutencao e operacdes no ano t.
» F, s80 0s gastos com combustiveis no ano t.

»= E, éaenergia gerada no ano t.

» 1 éataxa de desconto escolhida.

= tétempo de vida do sistema.

O resultado do célculo é geralmente expresso em délares por megawatt-hora ($/MWh).
Conceitualmente, este custo € equivalente ao prego medio por MWh que teria de ser pago pelos
consumidores para que o realizador do projeto obtivesse uma taxa de retorno igual a taxa de

desconto escolhida.

De acordo com Branker et al. (2011), LCOE é frequentemente usado para contrapor o custo
de geracédo de energia através de diferentes tecnologias. Em particular, ele pode ser utilizado
para determinar qual a fonte de energia mais eficiente, do ponto de vista de recursos investidos.

O modelo também pode ser empregado para comparar o custo da energia gerada por fontes
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novas com o custo de fontes ja existentes. Neste contexto, ele é extremamente Gtil em termos
de decisdes sobre a matriz energética de um pais, para decidir como as demandas futuras serdo

atendidas e quais tecnologias devem ser apoiadas.

Ao somar todos o0s custos, 0 método contempla também as diferencas estruturais entre as
tecnologias. Energias renovaveis tipicamente tém um investimento inicial altissimo, seguido de
custos de combustiveis proximos de zero; plantas de gas natural, por outro lado, tém custos de
combustiveis elevados, apesar do investimento inicial ser baixo. Estas e outras diferencas séo

todas levadas em consideracéo no calculo.

Além de permitir a comparacdo entre diferentes tecnologias, 0 LCOE permite também a
comparacdo de variagdes da mesma tecnologia. Empresas podem, por exemplo, estudar qual é
a especificacdo de células fotovoltaicas que trard o maior retorno, considerando o ciclo de vida
total do projeto, ou analisar quais as areas onde pesquisas de reducdo de custo trardo mais
retornos. O método permite até mesmo a compara¢ao entre os custos de geracao de energia com

o valor efetivamente pago pelos usuarios na conta de energia.

Naturalmente, ha limitacGes para este método. Branker et al. (2011) ressalta que, a despeito
das vantagens deste método, outras métricas também devem ser utilizadas para avaliar o
projeto, como o triple bottom line. Segundo esta metodologia, além do retorno financeiro, séo
ponderados 0s impactos sociais e ambientais.

Além dos custos enunciados na férmula acima, é possivel incluir custos de emissao de
gases de efeito estufa. Segundo Meneguin (2012), os custos de emissao de gases de efeito estufa
podem ser particularmente significativos no caso dos paises desenvolvidos. O Protocolo de
Quioto estabeleceu trés mecanismos de reducdo da emissdo de gases estufa, conhecidos como
Comeércio de Emissdes, Implementagdo Conjunta e 0 Mecanismo de Desenvolvimento Limpo
(MDL). No caso de paises em desenvolvimento, como o Brasil, apenas o MDL é atuante.
Portanto, diferentemente dos paises desenvolvidos, o Brasil ndo possui a meta de reduzir a
emissao de gases estufa em pelo menos 5,2% em relagé@o aos niveis de 1990 no periodo entre
2008 e 2012.

A despeito da auséncia desta meta e da tributacdo que a acompanharia, o MDL ainda
incentiva as instituigdes brasileiras a reduzir a emisséo de gases estufa: 0 mecanismo concede
as instituicbes o direito de receber créditos de carbono para comercializar. Além do gas

carbdnico, outros gases de efeito estufa podem ser “convertidos” numa quantidade de carbono
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equivalente, de tal forma que a iniciativa € ampla quanto a reducdo da pegada ecoldgica das

empresas.

Pessoas juridicas podem propor a Comissdo Executiva do MDL um projeto de reducédo de
gases, independentemente da natureza juridica da instituicdo (governos, ONGs, cooperativas,
associacoes e empresas). Depois que um projeto filiado ao MDL entra em vigor, o Conselho
Executivo do MDL emite, de tempos em tempos, a Redugéo Certificada de Emissées (RCE),
documento eletronico que especifica os créditos de carbono alcangados por cada projeto. Estas
RCEs equivalem & reducdo de uma tonelada de gés carbdnico. A bolsa de valores brasileira,
BM&FBovespa, possui um ambiente eletrdnico de negociacdo desenvolvido para viabilizar o

fechamento de negdcios envolvendo RCEs gerados por projetos de MDL.

Ainda de acordo com Meneguin (2012), o sucesso desta medida tem sido considerado
relevante no Brasil: apenas a usina termelétrica a biogéas instalada no Aterro Bandeirantes,
localizado em Perus, permitiu a Prefeitura de Sdo Paulo a comercializacéo de 1.262.793 RCEs
até 2012. Desta maneira, a comercializacdo dos RCEs se tornou uma fonte de arrecadacao
importante para instituices como a Prefeitura de Sdo Paulo. Notavelmente, em setembro de
2007, o banco holandés Fortis Bank NV/SA desembolsou num unico lance R$ 34 milhdes pelo
lote de 808.450 créditos de carbono colocados em negociacao pela Prefeitura de Sdo Paulo na

Bolsa de Mercadorias e Futuros.

Em conclusdo, no caso dos paises desenvolvidos, os custos de emissdo de gases de efeito
estufa sdo diretos, dado que as empresas sao taxadas caso a producdo esteja acima do limite
estabelecido pelas politicas governamentais locais. Diferentemente, as empresas localizadas em
paises em desenvolvimento ndo sdo taxadas. Em vez disto, elas podem usufruir da receita
adicional gerada pela comercializagdo de RCEs e, naturalmente, interpretar esta receita como
reducdo dos custos de geracdo. As empresas de paises desenvolvidos que produzem menos do
gue o limite legal estabelecido também podem comercializar créditos de carbono similares as
RCEs brasileiras. Desta maneira, & necessario considerar no modelo LCOE a influéncia
financeira — positiva ou negativa — das politicas internacionais de reducéo de gases de efeito

estufa.
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4.4. Metodologia

Utilizaremos dados provenientes da BNEF (Bloomberg New Energy Finance) e da

BM&FBovespa (a bolsa de valores brasileira).

A BNEF tem calculado e registrado, desde 2009, os custos nivelados de energia (LCOE)
para 19 fontes, incluindo subclasses de uma mesma tecnologia. Como o modelo utilizado é
rigorosamente 0 mesmo para todas as tecnologias, a padronizacdo dos dados permite
comparagOes consistentes entre tecnologias e entre datas. As outras bases de dados que

encontramos sd0 menos abrangentes ou menos pragmaticas.

Salientamos, no entanto, que os dados sdo uma média global. Infelizmente, ndo existem
empresas brasileiras que compilem sistematicamente dados nacionais sobre geracdo de energia
para fins de criacdo de uma bases de dados publica de LCOE como a Bloomberg. Tivemos,
consequentemente, que recorrer as médias internacionais, uma abordagem que julgamos

suficiente precisa, dado o escopo deste trabalho.

Esta metodologia difere da adotada por Losekann et al. (2013) em um dos artigos mais
recentes focados em otimizacdo da matriz energética brasileira do ponto de vista de teoria de
portfélios. Para contornar o grave problema de escassez de dados sobre o Brasil, os autores
recorreram a simulacGes de Monte Carlo. Para cada tecnologia, eles simularam os custos de
acordo com um conjunto de parametros (eficiéncia, fator de capacidade, custos de investimento
e operacdo, preco de emissao de gas carbbnico, etc.). Esta abordagem, nas palavras dos autores,
se trata de uma aproximacdo empirica: “Since no one knows the exact value of these
parameters, we postulate a probability distribution for each of them based on the information
available (IEA, NEA, questions to experts in Brazil)” (LOSEKANN et al., 2013).

Comparamos os dados obtidos pelos autores deste artigo com os precos pagos pelo governo
nos leilGes brasileiros. Os precos simulados de geracdo a partir de usinas hidrelétricas grandes
e pequenas sao, respectivamente, 50,24 e 69,09 dblares por MWh. No entanto, entre 16 de
dezembro de 2005 e 14 de dezembro de 2012, o preco médio pago pelo MWh, segundo os dados
publicos da ANEEL foi de, respectivamente, 83 e 134 reais. A despeito da taxa de cambio
utilizada, vemos que a diferenca entre as tecnologias segundo Losekann et al. é de 37,5%,
enquanto que segundo a média das concessdes é de 61,4%. Julgamos esta disparidade muito
grande para um pais onde 71% da geracdo de energia provém de usinas hidroelétricas (Balango

Energético Nacional, 2014).
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Os dados da BNEF nos permitiram evitar outro problema encontrado por Losekann et al.
Dada a escassez de dados, eles tiveram que limitar o estudo a apenas 8 fontes (gas, carvéo,
nuclear, 6leo combustivel, biomassa, edlica e hidrelétrica grandes e pequenas). A Bloomberg
compila dados para um total de 19 fontes, incluindo fontes mais modernas e suas subclasses,
como células fotovoltaicas a base de silicio e de filmes finos, trés tipos diferentes de biomassas

e ondas do mar e marés®.

Finalmente, evitamos a abordagem de Losekann et al. porque os autores misturaram dados
das simulac6es de Monte Carlo que eles préprios fizeram com dados do artigo de Awerbuch e
Spencer de 2007. Conquanto eles tenham sido capazes de estimar 0s custos e o0s riscos de cada
uma das 8 tecnologias, eles tiveram que recorrer aos dados publicados por Awerbuch e Spencer
para obter valores para as covariancias entre as variaveis. Julgamos que esta metodologia seja
pouco precisa, dada que os dados e contextos de cada artigo sdo diferentes. Ao utilizarmos
exclusivamente a base Bloomberg, asseguramos completa consisténcia entre os valores

estimados para custos, riscos e covariancias.

Como discutido anteriormente, 0 modelo LCOE calcula os custos de produc¢édo de acordo
com a fonte. No entanto, como otimizaremos a matriz energética de todo um pais, ndo sdo 0s
custos incorridos pelas empresas que importam, mas sim o preco pago pelo governo por unidade
de energia. Em outras palavras, o custo do modelo de otimiza¢do ndo € o mesmo custo do

modelo LCOE, mas sim o preco de venda da energia.

A diferenca entre o custo total dos produtos vendidos e receita total de vendas é a margem
bruta das empresas. Das diferentes margens (bruta, operacional, liquida, EBIT/LAJIR,
EBITDA/LAJIDA, etc.) de uma empresa, julgamos que a mais conveniente para a nossa
aproximacdo seja a margem bruta, pois esta corresponde exatamente as receitas totais da

empresa, descontado o custo dos produtos vendidos (CPV). Desta maneira, podemos utilizar a

4 Os mecanismos de geracdo de energia por ondas do mar e por marés sdo distintos, dado que as ondas do
mar sao originarias essencialmente do vento, enquanto que as marés advém das forgas gravitacionais entre a Terra,
aluaeo Sol.
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margem bruta como aproximagéo da diferenca entre o custo de producdo da energia e 0 prego

de venda. Como o custo estimado pelo modelo LCOE e por MWh, esta aproximacéao €é razoavel.

Para realizar esta adaptacdo, recorremos a dados publicos da bolsa de valores
BM&FBovespa e estimamos a margem média das empresas do setor elétrico. Apesar de as
empresas atuarem em diferentes estagios da cadeia de valor (a saber, a cadeia é composta por
geracdo, transmissdo e distribuicdo) e nem todas serem publicas, consideramos que a margem
média das empresas negociadas na bolsa seja suficientemente representativa da média das
empresas do setor. As dez empresas mais liquidas da bolsa de valores do setor elétrico entre
2003 e 2013 foram AES Tieté (controladora da Eletropaulo), Cemig, Cesp, Copel, Light S/A,
Tractebel, AES Elpa, Ampla, Celpe, Coelce, Elektro e Coelba. Consideramos que estas
empresas sejam representativas do conjunto de empresas do setor elétrico, dado que as outras

tiveram indices de liquidez extremamente baixos.

As empresas do setor elétrico costumam ter margens altas e, gracas a este fato, terem um
desempenho excelente na bolsa de valores. Notavelmente, a AES Tieté, a Coelce, a Cemig e a
Tractebel foram, respectivamente, as 28, 32, 5% e 72 empresas que mais distribuiram dividendos
entre 2003 e 2013, dentre todas as negociadas na bolsa (calculo do autor com dados da
BM&FBovespa).

As margens brutas em 2013 para as dez empresas supracitadas foram:

AES Tieté Cemig Cesp Copel Light S/A Tractebel
66,7% 36,1% 64,7% 19,2% 26,1% 47,7%

AES Elpa Ampla Celpe Coelce Elektro Coelba
4,8% 26,4% 12,9% 14,5% 17,2% 27,2%

Tabela 13 — Margens das empresas do setor elétrico mais liquidas

As empresas tém, portanto, uma media de margem de lucro bruta de 30,3%. Por
simplicidade, assumiremos a hipbtese de que a margem das empresas é em média constante,
isto é, que as variacfes nos seus custos sao sempre compensadas por variagdes proporcionais

no preco de venda ao governo.

Em resumo, a nossa abordagem consistira em converter os dados do modelo LCOE da

BNEF para o mercado brasileiro através da informagéo sobre a margem bruta das empresas
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obtida na BM&FBovespa e da taxa de cAmbio vigente no periodo analisado. Em seguida,

calcularemos o0s custos, riscos e covariancias entre as fontes, que séo as informag6es necessarias

para a aplicacdo efetiva dos modelos de otimizacdo de portfélio. Relembramos que o risco

corresponde a variancia dos custos.

4.5. Andlise preliminar dos dados

Fontes de Energia

Apresentamos abaixo as 19 fontes catalogadas pela BNEF, em ordem decrescente de custo

médio de geracgdo de energia, com explicacfes para as mais modernas.

10.

11.

12.

13.

Gés Natural e Petroleo.

Geotérmica: utiliza-se como fonte o calor proveniente do interior da Terra (até 64
quilémetros de profundidade), como géiseres e vulcoes.

Cogeracdo: é um processo onde eletricidade e calor sdo gerados conjuntamente,
através do aproveitamento de mais de 70% da energia térmica proveniente da queima
dos combustiveis. Geralmente, o combustivel utilizado é gas natural.

Hidrelétrica.

Carvéo.

Edlica em terra (onshore): gerada através da instalacdo de parques edlicos que
utilizam a energia do vento.

Geotérmica binaria: similar a geotérmica normal, porém permite a utilizacdo de
fontes de temperatura moderada.

Residuos sélidos: gerada a partir de dejetos urbanos, através da biomassa contida.
Nuclear.

Biomassa por incineracao: gerada a partir de biomassa, como lenha, bagacos de cana,
papel e palha de arroz.

Biomassa anaerdbica: o processo de decomposicao da biomassa é feito por bacterias,
que, ao decompor o material, produzem biogas (metano e dioxido de carbono).
Biomassa por gaseificagdo: a conversdo do combustivel solido em gas ocorre por
meio de reacOes termoquimicas.

Fotovoltaica filme fino: transformam a energia solar em energia elétrica atraves do

efeito fotovoltaico. A primeira geracdo de células fotovoltaicas era constituida por
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14.

15.
16.

17.

18.

19.

silicio, porém as novas geragdes utilizam um filme fino que reduz os custos de
manufatura e manutenc&o.

Fotovoltaica mdvel com silicio: é a primeira geracdo de células fotovoltaicas, com
um rendimento maior gragas a mobilidade, permitindo direcionar as células em direcéo
aos raios de sol.

Edlica no mar (offshore).

Fotovoltaica fixa com silicio: a primeira geracdo de células fotovoltaicas, sem o
mecanismo de direcionamento das células.

Refletor linear: um conjunto de espelhos que focam a luz do sol em um ponto, de tal
forma a deixa-la até 30 vezes mais intensa. Neste ponto, um liquido térmico (capaz de
manter estado liquido mesmo a altas temperaturas) é aquecido e, em seguida, utilizado
para a vaporizacgdo de agua.

Marés: ¢é obtida por meio do aproveitamento da energia proveniente do desnivel das
marés. Para que essa energia seja revertida em eletricidade é necessaria a construcao
de barragens, eclusas e unidades geradoras de energia. O sistema utilizado é
semelhante ao de uma usina hidrelétrica.

Ondas do mar: transformacdo da energia das ondas em energia elétrica.

Custos

O grafico a seguir mostra os retornos por fonte, em R$/KWh, segundo a base de dados da

BNEF. Por consisténcia, denominamos os retornos de LROE (retornos nivelados de energia,

ou levelized return of energy). Relembramos que os retornos sdo os inversos dos custos.

KWh/R$

Retornos nivelados de energia (LROE)

8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0 I
0.0 I l

L P X o Q& 0% & o X o O \\@\ & O & & &
F & L FEFF T T TS

. < & \ N

& DSBEIN IS N N S » >

& & &L N > 9 %\5 & & ¢ S O N ¥
RS o I O A AN NS & >
o’ o O X o &P & W Y W W o8 B

NSNS > G @ & R '~
S @ S & o Y ©
S ¥ F&FFS <
i > O K© Q
R QY & &

Figura 20 — Retornos nivelados de energia (LROE) de acordo com a BNEF
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O retorno da geracdo por hidrelétricas é de 6,28KWh/R$, correspondendo a um custo de
geracdo de R$159/MWh, sem distin¢do entre hidrelétricas grandes e pequenas. Apesar de este
valor estar acima da media paga pelo governo pela energia advinda de hidrelétricas, no leildo
de 30 de julho de 2010, o preco pago pela ANEEL pela energia das usinas hidrelétricas de
Pirapora, Canad, Jamari e Santa Cruz do Montenegro (todas na regido Sudeste) foi de, em
média, R$154. Apos esta validacao da fonte mais importante da matriz brasileira, consideramos

que a faixa de valores que obtivemos € plausivel.

Notamos que as tecnologias mais tradicionais séo consideravelmente mais baratas do que
as mais modernas. Com excecdo de edlica em terra e geotérmica, que tém um 6timo retorno, as

outras tecnologias inovadoras ainda possuem em geral custos bastante elevados.

Riscos

O gréfico abaixo compara os riscos de producdo, por fonte, segundo a base de dados da
BNEF. O risco é medido nos modelos de otimizacdo através da variancia dos retornos, porém
mostraremos na figura abaixo o desvio-padréo, pois este & mais facil de interpretar, por ser

expresso na mesma unidade que o retorno (KWh/R$).
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Figura 21 — Riscos das fontes de energia de acordo com a BNEF
Quanto aos custos, ndo ha nenhum padréo claro que diferencie as tecnologias. Notamos,

no entanto, que hidrelétricas possuem, simultaneamente, baixo custo e baixo risco. Esta

combinacdo de caracteristicas, extremamente benéfica para o Brasil, far& com que esta



80

tecnologia seja considerada um ativo muito interessante, do ponto de vista de teoria de

portfolios.

Covariancias

A matriz das covariancias se encontra no Apéndice, devido ao seu tamanho (19x19).

4.6. Resultados

A figura abaixo contrapde a fronteira eficiente da matriz energética brasileira, calculada de
acordo com o modelo cléssico de Markowitz, e quatro portfélios importantes para o Brasil: 0
atual portfolio de geracéo e os portfélios A, B e C, que serdo detalhados a seguir.

Fronteira Eficiente da Matriz Energética Brasileira
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Figura 22 — Fronteira eficiente da matriz energética brasileira

Os trés portfolios destacados na figura, chamados de A, B e C, sdo essenciais para a
otimizacdo do portfolio brasileiro:

A. A derivada da fronteira eficiente visivelmente sofre grandes alteragcdes nos pontos
A e B. Em particular, o ponto A corresponde a um retorno de 6,314 KWh/R$ e a
um risco (desvio-padréo) de 0,053 KWh/R$. A partir de A, o ganho de retorno passa
a ser pequeno em comparagdo com o aumento de risco. Como o retorno maximo
do portfolio é de 7,193 KWh/R$ e o risco maximo € 0,315 KWh/R$, o ponto A tem
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a interessante propriedade de equivaler a 88% do retorno maximo com apenas 17%
do risco méximo.

Além disso, o portfdlio A esta praticamente na mesma abscissa que a atual matriz
energética brasileira, sendo portanto préximo do portfolio de menor risco mantendo
0 atual retorno.

B. O portfolio B, por sua vez, equivale a um segundo ponto onde h4d uma grande
alteracdo na inclinacdo da fronteira eficiente. Ele seria, portanto, o “altimo”
portfélio (na direcdo de risco crescente) que ainda possui um balanco interessante
entre risco e retorno interessante. A curva que interliga os portfolios A e B é,
segundo a nossa analise, a regido mais interessante da fronteira.

C. O portfélio C se encontra na mesma ordenada que a atual matriz brasileira e,
consequentemente, equivale ao portfolio com maior retorno se o risco for mantido

constante.

A tabela abaixo explicita a composicdo dos portfolios A, B e C:

Tecnologia % emA % em B % emC
Gés e Petroleo 3,3% 24,1% 35,0%
Geotérmica 10,1% 13,4% 19,3%
Cogeracao 32,8% 30,1% 27,0%
Hidrelétrica 48,1% 32,4% 18,7%
Fotovoltaica fixa a 5,8%
base de silicio

Tabela 14 — Composi¢ao dos portfélios A,Be C

Notamos claramente que as tecnologias renovaveis modernas, exceto uma, estdo ausentes
nos portfolios. A razdo é simples e ja foi discutida anteriormente: elas possuem
simultaneamente altos custos e altos riscos. A excecdo € a célula fotovoltaica fixa a base de
silicio, que tem a interessante propriedade de possuir covariancia de praticamente 0 com
cogeracdo e com hidrelétrica e covariancia bastante negativa com geotérmica. Como cogeragéo,
hidrelétrica e geotérmica compdem 91% do portfélio A, a tecnologia fotovoltaica fixa com

silicio atua como um “contraponto” para o risco do portfolio.
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Como era de se esperar, dados 0s baixos custos e baixos riscos, as tecnologias mais
presentes sdo gas e petroleo, geotérmica, cogeracdo e hidrelétrica. Como explanado
anteriormente, a energia hidrelétrica € muito atraente do ponto de vista de teoria de portfolios

e, consequentemente, é a componente majoritaria dos portfolios A e B.

Apesar de interessantes, os resultados acima sdo pouco realistas: ndo é plausivel propor
mudancas radicais no portfolio energético de um pais, devido ao volume de investimentos
necessarios para alterar a matriz energética. Levando este fato em consideracéo, recalculamos
a fronteira eficiente, adicionando restricdes em relacdo a composicao do portfélio, de maneira

a tornar mais factiveis as mudancas propostas. As restri¢cGes adicionadas foram:

= (Gé&s Natural e Petréleo: minimo de 3% e maximo de 15%. O minimo decorre da
plausibilidade do modelo e 0 maximo para evitar que o0 pais seja excessivamente
dependente de petroleo. Conforme Awerbuch e Spencer (2007), variagcdes no prego
do petrdleo estdo entre as maiores fontes de risco para portfdlios de energia.

= Geotérmica e cogeracdo: maximo de 3%, por plausibilidade.

= Hidrelétrica: minimo de 65% e maximo de 85%, por questbes de factibilidade, de
dificuldade de alteracdo da matriz energética e para garantir o uso de outras fontes.

= Carvdo: maximo de 20%.

= Biomassa: entre 3% e 20%, para manter o uso da energia renovavel.

= Nuclear: entre 1% e 20%, por questdo de compatibilidade com a atual matriz.

= Geoteérmica binéria: maximo de 5%.

= Edlica em terra: minimo de 3% e maximo de 10%, devido as boas propriedades e
para incentivar 0 uso de energias renovaveis, porém mantendo a coeréncia com a
atual matriz.

= Fotovoltaica fixa com silicio: minimo de 3%, pela boa combinagéo risco-retorno e
para aumentar o uso de fontes modernas e renovaveis.

= Demais energias: maximo de 10%.

A figura a seguir contrapGe a nova fronteira eficiente e a atual matriz:
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Figura 23 — Fronteira eficiente com restrigdes de factibilidade
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Notamos que o comprimento da fronteira eficiente foi reduzido apds a introducdo das

restricdes. Este fenbmeno é esperado, conjuntamente com o deslocamento da fronteira, que foi

levada na direcdo sudeste, com retornos menores e riscos maiores. Tal qual aconteceu com a

fronteira sem restricdes, também focaremos a atencdo sobre um portfélio especifico da

fronteira. Este portfélio, denominado de MKW2014 por ter sido obtido através do modelo de

Markowitz com dados até 2014, é o mais préximo da atual matriz brasileira e possui 6timas

propriedades de risco e retorno. Para que possamos comparar o portfolio MKW2014 com a

fronteira eficiente irrestrita, apresentamos o grafico abaixo.
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Figura 24 — Fronteira eficiente irrestrita e o portfélio MKW2014
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Notamos que, apesar da inclusdo das restri¢des, o portfdlio MKW2014 ndo se afastou tanto
da fronteira. Em particular, mover a matriz em dire¢do ao portfélio MKW2014 equivale a
mové-la na direcdo da curva A-B da fronteira irrestrita, que, como vimos anteriormente, tem
Otimas combinacdes risco-retorno. Portanto, a recomendacéo final deste trabalho é que o Brasil

tente aproximar a matriz energética atual tanto quanto possivel deste portfélio, explicitado

abaixo:

Tecnologia % em MKW2014

Gas e Petroleo 15,0%

Geotérmica 3,0%

Cogeragéo 3,0%

Hidrelétrica 69,0%

Eolica em terra 3,0%

Nuclear 1,0%

Biomassa incineragédo 3,0%

Fotovoltaica movel com silicio 3,0%

Tabela 15 — Composi¢do do portfélio MKW2014

Este portfolio possui um retorno de 6,204 KWh/R$ e um risco (desvio-padrdo) de 0,141
KWh/R$. Em comparacdo com a atual matriz brasileira, com retorno de 6,13 KWh/R$ e risco

de 0,165 KWh/R$, a melhora € notavel, especialmente quanto ao risco, que caiu 14,5%.

4.7. Analise de sensibilidade a energia hidroelétrica

Realizaremos a seguir um estudo de qudo sensivel a fronteira eficiente é em relacdo a
restricdo de propor¢do minima de energia hidrelétrica no portfolio. Como sabemos, a matriz
brasileira é altamente dependente de recursos hidricos, com 71% da energia brasileira provindo
de centrais hidrelétricas. Esta é, naturalmente, uma enorme fonte de riscos, devido
simultaneamente a concentracdo do portfolio e a alocacdo majoritaria em uma componente que

nédo é a que tem a melhor relagéo risco-retorno.

A perspectiva de portfélios ndo € a Unica que evidencia 0s perigos de uma proporcgao tao
alta de energia hidroelétrica. Com a escassez de chuvas no pais, a chamada “crise hidrica”
atualmente assola o pais e em especial a regido Sudeste. Desde 12 de junho de 2014, é o0 volume

morto do sistema Cantareira que abastece as casas de cerca de 9 milhdes de pessoas na capital
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e regido metropolitana de Sdo Paulo. Com mais de 70% da energia do pais dependente de agua,
os beneficios da diversificagdo da matriz energética do pais sdo evidentes também sob as

perspectivas geogréafica e geologica (Balanco Energético Nacional, 2014).

Para testar qual a variacdo do risco e do retorno em funcdo da principal fonte de energia
do Brasil, testamos 0 modelo com cinco restrigdes diferentes. Para manter a plausibilidade do
modelo, comegamos com restricdo de minimo de 55% de energia hidrelétrica no Brasil e
avangamos a passos de 5% até 75%.

Abaixo encontram-se as cinco fronteiras eficientes, em ordem crescente (da esquerda para

a direita) de propor¢do minima de energia hidrelétrica.
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Figura 25 — Sensibilidade da fronteira eficiente a energia hidrelétrica

Torna-se evidente, a partir da figura, que a fronteira eficiente do Brasil é extremamente
sensivel a proporcdo minima de energia hidrelétrica. As fronteiras se deslocam no sentido de
menor risco ao passo que a restri¢do é relaxada, indicando que grande parte do risco da atual

matriz provém da excessiva proporcao de energia hidrelétrica.
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Alternativamente, podemos interpretar os deslocamentos das matrizes do ponto de vista

dos retornos. Ndo obstante a alteracdo da proporcdo minima, o retorno maximo da fronteira

(ponto mais a direita de cada fronteira) se mantém praticamente inalterado. Este fato indica que,

concomitantemente ao alto risco decorrente da concentracdo do portfélio, o Brasil ndo recebe

nenhum acréscimo minimamente significativo do ponto de vista do retorno.

4.8. Comparacao com outros resultados

Por fim, realizamos um breve estudo comparativo entre os resultados deste trabalho e os

de estudos similares, dos quais destacamos trés:

PDE2020 (Ministério de Minas e Energia, 2012): A Secretaria de Planejamento e
Desenvolvimento Energético do Ministério de Minas e Energia publica anualmente
um estudo chamado de Plano Decenal de Expansdo de Energia (PDE2020). O
relatorio leva em consideracdo projecdes de diversos indicadores sociais, técnicos
e macroecondémicos, como PIB, populacdo, e oferta e demanda de energia, e estima

qual sera a matriz energética brasileira em 2020.

PSW2020 (WWF-Brazil,2012): O WWF (World Wildlife Fund) realizou um
estudo denominado de Power Switch 2020 (PSW2020), focado majoritariamente

em uma matriz energética verde e sustentavel proposta para o ano de 2020.

BAU2020: No mesmo relatério em que o WWF prop8e um cenario sustentavel, um
cenario menos consciente ecologicamente é proposto, chamado de business-as-
usual (BAU2020). Este cenario é baseado em projecdes acerca da situacao
macroeconémica e energética do pais em 2020, caso poucas politicas verdes sejam

adotadas.

A figura a seguir localiza no plano retorno-risco os trés portfolios acima, conjuntamente

com a fronteira eficiente irrestrita e o portfolio MKW2014 gque propusemos.
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Figura 26 — Comparagdo com projecdes de outros estudos

O primeiro ponto importante desta figura é que, de acordo com o modelo de Markowitz e
os dados da BNEF, o portfélio MKW2014 é o tnico que melhora tanto o retorno quanto o risco
da matriz energética brasileira. O portfélio PSW2020 diminui levemente os riscos, ao passo
que reduz drasticamente os retornos. Por sua vez, o portfdlio BAU2020 apresenta um grande
acréscimo de retorno, mas que vem acompanhado de um aumento também do risco. O portfélio
PDE2020 é praticamente equivalente a atual matriz brasileira, com pioras leves tanto de risco
quanto de retorno. Diferentemente das projecdes, o portfélio que nés propomos, MKW2014,
caminha na diregcdo noroeste do plano risco-retorno: ele aumenta o retorno ao mesmo tempo
em que diminui o risco, sendo portanto a Unica proposta que alia os beneficios tanto do aumento

do retorno quando de reducdo de riscos.

O segundo ponto relevante a ser notado é que as trés projecfes caminham em dire¢des
distintas do plano. PSW2020, por focar em fontes energéticas sustentaveis, resulta num
decrescimento do retorno. No entanto, o risco também diminuiu, indicativo de que as

tecnologias foram bem selecionadas. BAU2020 e PDE2020, dada a menor preocupacao
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ecoldgica, resultam em portfélios com retornos no minimo iguais aos atuais. O cenario
business-as-usual sacrificou a reducdo do risco em funcdo do grande aumento de retorno,
enquanto que o Plano Decenal de Expansédo da Energia foi extremamente conservador quanto

as mudancas propostas, alterando pouco a matriz segundo o plano risco-retorno.

O dltimo ponto a salientar é que a natureza do portfolio MKW2014 é diferente da dos
demais portfélios acima. PSW, BAU e PDE sdo projecOes atreladas a hipdteses altamente
realisticas. O portfolio MKW2014, apesar de adicionarmos restricbes de factibilidade,
corresponde a um 6timo tedrico, um modelo a ser usado como guia para politicas energéticas
futuras. Desta maneira, o papel desempenhado por estes portfélios é distinto. Enquanto que as
projecOes representam cenarios provaveis, o portfolio MKW2014 simboliza a matriz energética

ideal para o Brasil, do ponto de vista de retorno e risco — um alvo a ser alcangado.

A recomendacdo final deste trabalho é que, do ponto de vista de retorno e risco, a matriz
energética brasileira caminhe na direcdo ao portfolio MKW2014, aliando aumento de energia

por unidade monetaria investida (retorno) e reducéo de riscos.
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5. CONCLUSOES

Com o objetivo de realizar uma analise da matriz energética brasileira sob a perspectiva de
teoria de portfolios, iniciamos o estudo selecionando um conjunto de modelos de otimizacéao de
portfélio da literatura académica composto por 48 modelos. Estes modelos sdo gerados a partir
das combinacdes entre seis fatores, classificados entre extrinsecos, caso alterem apenas a 0
modo de utilizacdo do modelo, ou estruturais, caso tragam diferencas profundas no

funcionamento dos modelos.

Analisamos estes modelos sob as métricas de desempenho e rugosidade, determinando que
0 modelo tradicional de Markowitz tem o melhor balanco global entre desempenho e
rugosidade. Este modelo, ndo obstante o grande nimero de variagdes analisadas neste trabalho,
indubitavelmente mantém a sua posicdo como modelo de melhor desempenho: no nosso teste
final, os resultados do Markowitz tradicional foram pelo menos 70% superiores aos dos outros

modelos.

Adicionalmente, confirmamos estudos anteriores e verificamos que utilizar otimizacao
bayesiana diminui a rugosidade dos modelos, sendo portanto um modelo mais robusto de
otimizacdo. Infelizmente, obtivemos evidéncia de que, simultaneamente, este modelo piora o

desempenho global da otimizacao.

Constatamos que o CVaR teve uma média de desempenho sempre abaixo do modelo
classico de Markowitz, bem como uma rugosidade sempre acima. Desta maneira, tais
caracteristicas ndo justificam a pesada tarefa computacional de calcular o CVaR em cada
iteracdo. As redes neurais, por sua vez, demonstraram um 6timo desempenho; porém, como a
rugosidade delas aumentou desproporcionalmente em relagdo ao modelo tradicional de

Markowitz, a razdo desempenho/rugosidade diminuiu.

Apos este estudo preliminar, prosseguimos a otimizacao de dois parametros numeéricos do
modelo tradicional de Markowitz, através de algoritmos evolutivos. Encontramos uma
combinacéo de parametros capaz de melhorar em 331% o desempenho ao longo do periodo dos
3400 dias de negociagédo que antecedem 15 de maio de 2014 (13 anos). Ao reparametrizar os
outros modelos, todos tiveram melhoras significativas (entre 320% e 1518%). No entanto,

Markowitz (Close) continuou sendo o melhor, com um desempenho 60% melhor do que o
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segundo colocado, Bayes (Close). Novamente, a otimizagdo bayesiana apresenta resultados
mais robustos, congquanto a razdo entre desempenho e rugosidade continue pior do que no

modelo classico de Markowitz.

Em seguida, ja em posse do modelo de melhor desempenho, prosseguimos a aplicacdo do
modelo a matriz energética nacional. Localizamos a atual matriz em relagédo ao plano de risco-

retorno e demonstramos através da fronteira eficiente que ela é sub-6tima.

De acordo com diversas restricdes de factibilidade que impusemos, tais que reduzir a
proporcdo de energia hidrelétricas apenas até certo ponto que consideramos plausivel,
propusemos uma matriz energética que concilia uma reducdo consideravel do risco do portfélio
e um aumento significativo do retorno, que é definido como a energia gerada por cada unidade
monetaria paga pelo governo. Incentivamos, nesta matriz, o uso de fontes energéticas
renovaveis ndo-hidricas. A recomendacao final deste trabalho, em relacdo a matriz brasileira, é

se aproximar deste portfélio 6timo que propomos, que denominamos de MKW2014.

Posteriormente, analisamos a sensibilidade da otimizacao em relagdo a propor¢cdo minima
de energia hidrelétrica, concluindo que, quanto menos energia hidrelétrica for requerida, melhor

é para o pais, em termos de risco-retorno.

Finalmente, comparamos 0s nossos resultados com outras trés projecdes encontradas na
literatura, sob a perspectiva do nosso modelo. De acordo com a posicdo da atual matriz
brasileira, verificamos que as outras projecdes trariam mais consequéncias negativas do que
positivas — diferentemente da nossa proposta, que seria benéfica tanto em termos de risco

quanto de retorno.
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APENDICE

Matriz das Covariancias

De acordo com os dados da BNEF e na ordem de fontes utilizada no corpo do trabalho:
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