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 (Peter Drucker) 

  



  9 

 

  

 

 

RESUMO 

 Este trabalho de formatura consiste em uma aplicação da Teoria de Portfólios à matriz 

energética brasileira, com foco no modelo de Média-Variância de Markowitz. 

É apresentado, inicialmente, um estudo comparativo de diferentes modelos de otimização 

de portfólio propostos pela literatura, sob duas métricas: desempenho e rugosidade, em que 

rugosidade é um indicador de quanto um portfólio varia ao longo do tempo. Em seguida, 

algoritmos evolutivos são utilizados para otimizar os parâmetros dos modelos estudados e, 

consequentemente, obter uma melhora substancial de seus desempenhos.  

Concluímos que, apesar das diversas propostas de melhoria presentes na literatura 

acadêmica, como otimização bayesiana e o uso do CVaR como medida de risco, o modelo 

clássico de Markowitz, mesmo não sendo o mais robusto, mantém a sua posição como modelo 

com melhor balanço entre desempenho e robustez dentre os analisados. Verificamos também 

que utilizar algoritmos evolutivos para parametrizar modelos de otimização de portfólio é 

extremamente eficaz.  

Ao aplicar o modelo de Markowitz à problemática da geração de energia no Brasil, nós 

inicialmente localizamos a atual matriz energética em relação ao plano de risco-retorno e 

demonstramos através da fronteira eficiente que ela é sub-ótima. Em seguida, propomos uma 

matriz energética otimizada que concilia uma redução considerável do risco e um aumento 

significativo do retorno (neste contexto, denominamos “retorno” a energia gerada por unidade 

monetária paga pelo governo).  

Por fim, analisamos a sensibilidade do portfólio ótimo em relação à proporção de energia 

hidrelétrica exigida, concluindo que o Brasil teria grandes benefícios em diminuir a 

dependência de recursos hídricos. Ao comparar os nossos resultados com o de outros autores, 

demonstramos que, sob a perspectiva do nosso estudo, a nossa proposta é mais benéfica para o 

país. 

Palavras-chave: otimização de portfólios, geração de energia, matriz energética, modelo 

da média-variância, otimização robusta, VaR, CVaR, algoritmos evolutivos, redes neurais   
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ABSTRACT 

 This bachelor thesis presents an application of portfolio theory, in particular of 

Markowitz’s mean-variance model, to energy generation in Brazil. 

 We start with a comparative study of several portfolio optimization models found in the 

academic literature, according to two criteria: their performances and their roughness, in 

which roughness is defined as a measure of portfolio composition change over time. We then 

proceed with the use of evolutionary algorithms to optimize the parameters of these models 

and, hence, substantially improve their performance.  

We conclude that, in spite of several improvement propositions, such as the use of bayesian 

optimization and the CVaR as a risk measure, the classic Markowitz model, although not the 

most robust among the analyzed models, keeps its position as the best-performing model. We 

also verify that evolutionary algorithms are extremely efficient to optimize the parameters of 

portfolio models.  

By applying the mean-variance model to energy generation in Brazil, we demonstrate that 

Brazil’s current energy-generating portfolio is suboptimal and propose an optimized energy 

portfolio, which conciliates a sizable reduction in risks and a valuable increase in energy 

production return (in this context, “return” corresponds to the amount of energy generated by 

each dollar paid by the government).  

We then conduct a sensibility analysis on the optimal portfolio, regarding the minimum 

required ratio of hydroelectric power. We conclude that Brazil would greatly benefit from 

decreasing its dependence on water resources. Lastly, we compare our results to those of 

similar studies. We demonstrate that, according to our models, the optimal portfolio we propose 

is superior to the other approaches. 

 

Keywords: portfolio optimization, energy generation, energy generation portfolio, mean-

variance model, VaR, CVaR, evolutionary algorithms, neural networks  
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1. INTRODUÇÃO 

1.1. Apresentação da Empresa 

Fundada em 1963 por Bruce Henderson, o Boston Consulting Group (BCG) está presente 

no Brasil desde 1997. Com faturamento de 4 bilhões de dólares em 2013, o BCG é a segunda 

maior empresa do mundo de consultoria estratégica e se organiza matricialmente através de 

áreas funcionais e áreas de expertise na indústria, conforme apresentado na Figura 1: 

 

Figura 1 – Organização matricial do BCG 

 

Conhecida mundialmente por seus serviços, ferramentas analíticas (matriz BCG de 

portfólio, curva de experiência, entre outras), publicações e ex-funcionários, o BCG tem como 

missão ajudar corporações com grande relevância em seus segmentos de atuação a adquirir e 

sustentar uma vantagem estratégica de longo prazo. Como exemplos de clientes mundiais do 

BCG, podemos citar Ford, Pfizer e IBM. No âmbito de responsabilidade social, o Boston 

Consulting Group apoia muitos projetos sociais, como o Instituto Ayrton Senna, o Instituto 

Natura e a plataforma de inovação social Yunus Social Business. Atualmente, os principais 

concorrentes do BCG no mercado de consultoria estratégica são McKinsey & Co. e Bain & Co. 

Nos rankings A Melhor Empresa Para se Trabalhar de 2014, o BCG ficou em 1º na 

Consulting Magazine e em 3º na Fortune, atrás exclusivamente do Google e de outra empresa 

de softwares.  
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1.2. Programa de Estágio 

O programa de estágio se organizou em torno de duas tarefas principais: 

A. Realização de um estudo macroeconômico, comparando o atual contexto do Brasil com 

o de outros países emergentes, em especial os outros BRICS (Rússia, Índia, China e 

África do Sul). O foco do estudo foi em produtividade, definida como o produto interno 

bruto gerado por pessoa no país.  

Como resultados principais, pode-se citar que o Brasil possui produtividade baixa, 

alinhada com a dos países em desenvolvimento, e taxa de crescimento também baixa, 

similar à dos países desenvolvidos. Esta combinação de características configura um 

grave problema macroeconômico para o país.  

Para melhorar compreender o problema da produtividade, foi realizado um estudo sobre 

o setor elétrico do país, que motivou a definição do tema deste trabalho. 

 

B. Criação de um modelo de análise de Retorno Total para o Investidor (TSR, do inglês 

total shareholder return). O TSR é uma métrica de desempenho amplamente utilizada 

no mercado de capitais, dada a sua fácil compreensão: 

 

TSR =  
Valorização da Ação + Dividendos

Investimento Inicial
 

 

Conquanto seja simples, o TSR é extremamente poderoso, pois é possível decompô-lo 

em subcomponentes, de forma a analisar as alavancas de geração de valor para cada 

empresa. Pode-se, por exemplo, decompor o TSR em crescimento de receita, alteração 

na margem, valorização nos múltiplos1, aumento do endividamento, diluição das ações 

da empresa, etc. 

                                                 

 

1 Múltiplos são medidas de desempenho de uma empresa, expressas na forma de razões entre duas métricas 

mais simples. Por exemplo, o múltiplo P/L é muito utilizado, correspondendo à razão entre o Preço de uma ação 

e o Lucro gerado pela empresa. Neste caso, o múltiplo é uma métrica de quanto o mercado está disposto a pagar 

por cada real que a empresa gere de lucro. 
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Através deste modelo, diversas análises setoriais foram feitas, de maneira a comparar 

quais são as alavancas mais proeminentes de geração de valores entre empresas que 

compõem a economia brasileira. 

As duas atividades desenvolvidas durante o estágio motivaram grandemente a definição do 

tema deste Trabalho de Formatura. Em particular, a utilização de técnicas do mercado de 

capitais para análises macroeconômicas é uma temática unificadora entre o estágio e o trabalho.  

Apesar desta intrínseca relação, por questões de confidencialidade dos dados dos clientes 

do BCG, este trabalho não contém absolutamente nenhuma informação detalhada acerca das 

atividades desenvolvidas na empresa. Não obstante este fato, os resultados deste trabalho final 

vêm sendo utilizados pela empresa, com relevância crescente ao longo do estágio. Neste 

capítulo e nos subsequentes, as análises serão tratadas como independentes das atividades 

desenvolvidas na empresa, sem menções explícitas a nenhum dado confidencial do BCG. 

1.3. Formulação do Problema 

Compreender as atividades de geração, distribuição e transmissão de energia no Brasil é 

uma tarefa que envolve conhecimentos multidisciplinares e tange à intersecção entre 

Engenharia, Economia e Política. Adicionalmente, a relevância crucial deste setor para a vida 

de todos os brasileiros aumenta substancialmente a sua complexidade, em especial devido à 

atual crise hídrica no país.  

Os modelos de análise de composição de portfólios, muito presentes no mercado de 

capitais, vão de encontro a esta problemática. Tais modelos são robustos – dada a enorme 

variação das condições macro e microeconômicas que regem os preços dos ativos –, 

abrangentes – de acordo com a natureza complexa de grande parte dos ativos financeiros –, 

eficientes – para responder rapidamente às demandas instáveis do mercado – e, por fim, eficazes 

– para atender às altas expectativas de desempenho dos seus utilizadores. 

Esta conexão não-trivial entre o setor de energia elétrica e o mercado de capitais é 

exemplificada pela crescente utilização de modelos financeiros nos mercados de carbono e nos 

mercados “spot” de energia. Os mercados de carbono constituem um ambiente para negociação 

de créditos de emissão de gases de efeito estufa, cuja institucionalização foi acelerada pelo 

Protocolo de Quioto. Os mercados spot, por sua vez, são utilizados por empresas geradoras de 
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energia para comercialização da capacidade que não estiver sendo vendida para o SIN (Sistema 

Interligado Nacional). Nestes dois mercados, os modelos financeiros vêm sendo utilizados com 

respeitável sucesso, demonstrando a adaptabilidade destes modelos às complexas questões 

energéticas de uma empresa, de um país ou de um conjunto de países.  

Compreender, analisar e formular melhorias para um setor de tal importância pressupõe a 

utilização de técnicas avançadas de Engenharia. Neste trabalho, optamos por empreender os 

conhecimentos de Pesquisa Operacional e de Teoria de Portfólios para estudar o setor 

energético, por serem multidimensionais, abrangentes e computacionalmente eficientes. 

1.4. Objetivo do Trabalho 

O presente Trabalho de Formatura objetiva aplicar conhecimentos de Engenharia a uma 

questão imprescindível para o desenvolvimento do Brasil: a escolha da matriz energética. Como 

71% da energia brasileira vem de usinas hidrelétricas (Balanço Energético Nacional, 2014), a 

matriz brasileira é passível de muitas melhoras; em particular, diversificá-la traria diversas 

vantagens, tais como mitigação de riscos e aumento da disponibilidade de fontes alternativas. 

Neste contexto, o problema que este trabalho se propõe a estudar é a priorização das possíveis 

fontes de energia para o Brasil, através de modelos utilizados no mercado de capitais. 

Para realizar este estudo, subdividimos o trabalho em dois objetivos; o primeiro funciona 

como uma etapa intermediária para a realização do segundo. Primeiramente, realizaremos um 

estudo comparativo de diferentes modelos de otimização de portfólio propostos pela literatura. 

Em seguida, já em posse deste estudo, poder-se-á de fato prosseguir com o objetivo principal 

do trabalho, que é o de estudar e propor melhorias à matriz energética brasileira. 

Tivemos de subdividir o objetivo em duas partes subsequentes devido à absoluta escassez 

de dados sobre energia no Brasil. Este problema é frequentemente encontrado nos estudos 

realizados sobre o tema. Por exemplo, os autores de um dos artigos mais recentes que 

analisaram a matriz brasileira sob a perspectiva de portfólios (LOSEKANN et al., 2013) 

tiveram de utilizar dados de outro artigo (AWERBUCH; SPENCER, 2007) para realizar etapas 

de cálculo fundamentais, não obstante o fato de os dados provirem de contextos completamente 

diferentes. 

Esta dificuldade motivou o estudo preliminar que comporá a primeira parte deste trabalho. 

Realizamo-lo para diminuir as consequências da escassez de dados nos resultados finais e, desta 
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maneira, assegurar a plausibilidade das recomendações que faremos. Este primeiro estudo não 

será feito no mercado de energia, mas no mercado de capitais. Esta opção decorreu da 

incomensurável diferença existente entre a disponibilidade e a variedade de dados sobre estes 

mercados; se no mercado de energia dados são extremamente escassos, no mercado financeiro 

há uma miríade de informações. Desta maneira, o mercado de capitais atuará como um campo 

de treinamento para os estudos sobre o mercado de energia. 

O primeiro objetivo será alcançado em duas etapas. Inicialmente, como os modelos de 

otimização estão sujeitos a incertezas nos cálculos de seus parâmetros, estudaremos a influência 

destas incertezas no desempenho global dos modelos. Em seguida, de acordo com os resultados 

da primeira etapa, proporemos uma otimização dos parâmetros do modelo de melhor 

desempenho, através de algoritmos evolutivos. 

Finalmente, o segundo objetivo está organizado em três etapas. Primeiramente, levaremos 

em consideração todas as descobertas do estudo preliminar e aplicaremos a teoria de portfólios 

à problemática da geração de energia no Brasil. Em seguida, realizamos uma análise de 

sensibilidade à proporção de energia hidrelétrica no portfólio. Por fim, compararemos os nossos 

resultados com os de outros estudos similares. 

1.5. Justificativa do Trabalho 

Ao aliar energia e finanças, dois temas aparentemente desconexos, este Trabalho de 

Formatura – bem como muitos outros artigos e teses – propõe uma política de geração de 

energia no país que difere da atual. Desta forma, ele ultrapassa o âmbito da Engenharia ou da 

Matemática Aplicada e ataca diretamente a situação econômica do país. Considerando-se que 

a economia do país tem impacto direto sobre a sociedade como um todo, em termos sociais, 

geográficos e políticos, este trabalho passa então a ter um amplo campo de influência. 

A utilização de técnicas de otimização, provenientes da Pesquisa Operacional, na 

problemática da geração de energia, no Brasil ou em qualquer outro país, garante 

simultaneamente economia de gastos, maior estabilidade energética e uso mais eficiente da 

matriz produtora de energia (AWERBUCH, 2000). 

Em particular, as técnicas de otimização de portfólios podem ser extremamente relevantes 

para a questão energética, já que podem ser aplicadas tanto em um contexto puramente 
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financeiro quanto em ativos de natureza não-financeira. Quando aplicadas a portfólios de 

investimentos financeiros, elas permitem alocar os recursos de maneira a maximizar o retorno 

para um dado risco. Pode-se, alternativamente, minimizar o risco para um dado retorno. Como 

será mostrado nas próximas seções, diversos modelos para realizar esta otimização existem, 

com suas respectivas vantagens e inconvenientes.  

Quando aplicadas a portfólios de outra natureza, a interpretação de variáveis como “risco” 

e “retorno” costuma depender fortemente do contexto de aplicação. No caso da geração de 

energia, veremos que o “retorno” corresponde à quantidade de energia gerada por cada unidade 

monetária investida.  

Os conceitos de otimização e diversificação de portfólio têm sido essenciais tanto no 

desenvolvimento e na compreensão dos mercados financeiros quanto nas análises de tomada de 

decisão (KOLM et al., 2013). O maior avanço neste campo ocorreu em 1952, com o advento 

do Modelo da Média-Variância, conhecido como Teoria Moderna de Portfólios 

(MARKOWITZ, 1952), que vem sendo há mais de 60 anos o pilar de sustentação unificador de 

quase todos os modelos de otimização de portfólio. Este modelo forneceu uma resposta 

consistente à questão fundamental de alocação de investimentos: como um investidor deve 

alocar os seus recursos entre todas as opções possíveis?  Primeiramente, Markowitz quantificou 

retorno e risco de um ativo, através das estatísticas retorno esperado e desvio-padrão. Em 

seguida, ele sugeriu que estas medidas deveriam ser consideradas conjuntamente, de maneira 

que o critério de escolha seja dependente da relação entre estas duas variáveis. 

Diversos modelos foram propostos posteriormente, utilizando abordagens matemáticas 

mais avançadas. Notavelmente, Rockafellar e Uryasev (2000) propuseram um modelo de 

otimização utilizando o CVaR (Conditional Value-at-Risk) que é em geral considerado uma 

evolução do modelo de Markowitz. Outras evoluções do modelo incluem o uso de otimização 

bayesiana (MOČKUS, 1972). 

Quanto à geração de energia no Brasil, sabemos que o país desfruta de uma grande riqueza 

fluvial. Historicamente, este fato influenciou o país a adotar uma matriz energética fortemente 

focada em hidroelétricas. No entanto, outras opções existem e, como veremos ao longo do 

Trabalho, podem ser mais interessantes em muitos cenários. Como ocorreu em todos os países, 

a atual combinação de formas de geração de energia no Brasil é fruto de uma confluência de 

fatores: interesses políticos, ocupação territorial, clima e vegetação, desenvolvimento 
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econômico, entre outros. A atual crise hídrica no país reatesta a importância deste tema, 

demonstrando que uma matriz energética fortemente dependente de água pode ser uma escolha 

demasiadamente arriscada e imprudente para uma nação das proporções do Brasil.  

É natural e previsível que o “ótimo” que encontraremos matematicamente dificilmente 

conseguirá ser integralmente posto em prática. Evidentemente, isto não diminui a sua 

importância como orientação para futuras escolhas de investimentos – neste sentido, o ótimo 

que encontraremos atua como um alvo ideal a ser alcançado. 

1.6. Estrutura do Trabalho 

O primeiro capítulo apresenta a empresa do estágio e a formulação do problema, bem como 

o objetivo e a justificativo do trabalho. O capítulo seguinte apresenta, concomitantemente, os 

fundamentos teóricos que atuarão como pilares de sustentação do trabalho e a revisão 

bibliográfica. Decidimos permear os tópicos teóricos com a revisão bibliográfica para diminuir 

a compartimentalização do trabalho.  

Inicia-se a parte original do trabalho no Capítulo 3. Primeiramente, são apresentados os 

fatores que definem os modelos que serão estudados. Tais fatores seguem uma categorização, 

visando a facilitar as análises posteriores. Ainda no Capítulo 3, é realizado um estudo 

comparativo dos modelos estudados, que correspondem tanto a modelos clássicos quanto a 

modelos modernos da Literatura Acadêmica. Este estudo focará em duas métricas; a saber, 

desempenho ao longo do tempo e variação da composição do portfólio ao longo do tempo.  

Ainda no terceiro capítulo, já em posse do modelo com melhor desempenho, far-se-á uso 

de Algoritmos Evolutivos para a otimização dos parâmetros do modelo, objetivando melhorá-

lo segundo as métricas de desempenho estabelecidas.  

O Capítulo 4 apresenta a aplicação do modelo de otimização de portfólio usado no mercado 

financeiro à matriz energética brasileira. Em seguida, são discutidos os resultados e as 

consequências, em termos de políticas governamentais. O foco é dado nos conceitos por trás da 

aplicação deste algoritmo e nas adaptações realizadas, de tal forma a esclarecer as vantagens e 

os inconvenientes de tal abordagem.  

Por fim, o Capítulo 5 apresenta as conclusões. 



26 

 

 

  



  27 

 

  

 

 

2. FUNDAMENTOS TEÓRICOS 

2.1. Pesquisa Operacional 

Apesar de se fundamentar em conhecimentos muito anteriores, o campo de pesquisa 

operacional, também conhecido como ciência da gestão, tornou-se uma disciplina 

independente no fim da década de 1930. De acordo com van Hoeve (2005), grande parte da 

motivação para esta disciplina veio das operações militares durante a 2ª Guerra Mundial, daí o 

nome de “operacional”. Apesar da dificuldade de encontrar uma definição que englobe todos 

os ramos de pesquisa, o Institute for Operations Research and the Management Sciences usa a 

seguinte definição: 

“Pesquisa Operacional e as Ciências da Gestão são as disciplinas profissionais que 

lidam com a aplicação de tecnologia da informação para tomadas de decisão conscientes.” 

(Tradução livre.) 

 Na prática, Pesquisa Operacional designa um conjunto de algoritmos e técnicas, como 

programação linear, programação inteira, programação não-linear e algoritmos evolutivos.  

Estes algoritmos são usados para avaliar linhas de ação alternativas e encontrar as soluções que 

melhor servem aos objetivos de indivíduos ou organizações. Dada a sua força econômica 

comprovada, pesquisa operacional foi – e ainda é – fruto de grandes desenvolvimentos. 

Historicamente, muitas das técnicas de pesquisa operacional têm se provado extremamente 

úteis para resolver problemas de cunho prático, como no campo da logística ou das finanças. 

Atualmente, com o apoio de recursos computacionais de crescente capacidade de 

processamento, a pesquisa operacional permite utilizar enormes quantidades de dados para 

analisar problemas extremamente complexos, sempre visando a garantir que a solução 

encontrada seja a mais interessante para o usuário, de acordo com o modelo utilizado. 

Além de servir aos propósitos de empresas, a pesquisa operacional também tem sido 

utilizada de maneira promissora por governos, sobretudo dos EUA. No Brasil, esta prática ainda 

não é bem disseminada, porém este Trabalho de Formatura será um exemplo concreto do poder 

da utilização destas técnicas para o bem público. 
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2.2. Preço, Retorno e Risco de Ativos 

Antes de apresentarmos o modelo de Markowitz, que será a base deste trabalho, 

definiremos alguns conceitos que serão muito usados posteriormente2. 

2.2.1 Preço 

Numa primeira abordagem, consideraremos ativos negociados no mercado de ações para 

exemplificar os conceitos importantes para otimização de portfólios. No caso dos ativos 

financeiros, chamamos 𝑷𝒕 o preço no instante 𝒕. Geralmente, toma-se o preço de fechamento 

do ativo, no fim do dia, semana ou mês. O preço de fechamento é o último preço a que um título 

foi comercializado no intervalo considerado. Outros preços importantes, e que serão utilizados 

nas seções subsequentes, são os de alta (high) e baixa (low) em um determinado período, 

correspondendo respectivamente ao preço mais alto e ao mais baixo a que o ativo foi negociado. 

Por enquanto, focaremos apenas no preço de fechamento 𝑷𝒕. 

Consideraremos que o universo de investimentos possíveis seja composto de 𝒏 ativos com 

retornos 𝒓𝟏, ..., 𝒓𝒏, onde ∀𝒊, 𝒓𝒊 é uma variável aleatória. 

2.2.2 Retorno 

Para estimar o retorno futuro de um ativo, a maneira mais simples é calcular a média 

histórica. Portanto, para cada ativo 𝒊, o retorno esperado é dado numa primeira abordagem por: 

𝑬[𝒓𝒊] = 𝝁𝒊 

Na equação acima, 𝑬[𝒓𝒊] designa a esperança do retorno do ativo 𝒊 e 𝝁𝒊 é a média aritmética 

do vetor de retornos do ativo 𝒊. Cada componente deste vetor será calculado através da seguinte 

fórmula, que calcula o retorno entre os instantes 𝒕 − 𝟏 e 𝒕: 

𝑹𝒕 = 𝒍𝒏
𝑷𝒕

𝑷𝒕−𝟏
 

O retorno calculado é logarítmico (natural), pois a distribuição seguida é mais próxima de 

uma distribuição normal do que se o retorno fosse calculado da maneira tradicional (FABOZZI 

et al., 2007). Similarmente ao retorno tradicional, definido pela equação abaixo, 

                                                 

 

2 Estrutura baseada em Félix Roudier (2007). 
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𝑹𝒕
𝒕𝒓𝒂𝒅 =

𝑷𝒕 − 𝑷𝒕−𝟏

𝑷𝒕−𝟏
 

o retorno logarítmico tem a conveniente propriedade de ser negativo quando o preço do 

ativo caiu e positivo quando este subiu. 

Podemos também calcular o retorno esperado de todo um portfólio de investimentos 𝑷, 

composto por 𝒏 ativos, em que 𝝎𝒊 é a porcentagem dos recursos alocada a cada ativo: 

𝝁𝑷 = 𝑬[𝒓𝑷] = ∑𝝎𝒊𝑬[𝒓𝒊] = ∑𝝎𝒊𝝁𝒊

𝒏

𝒊=𝟏

𝒏

𝒊=𝟏

 

2.2.3 Risco 

A. Variância 

Existem várias formas de calcular o risco de ativos. A mais clássica é a variância dos 

retornos dos ativos, por ter sido estabelecida no modelo de Markowitz.  

Para uma dado ativo 𝒊, o risco é, portanto, dado por: 

𝝈𝒊
𝟐 = 𝑽𝒂𝒓(𝒓𝒊) = 𝑬[(𝒓𝒊 − 𝑬[𝒓𝒊])

𝟐] = 𝑬[(𝒓𝒊 − 𝝁𝒊)
𝟐] 

A covariância entre os ativos 𝒊 e 𝒋 é definida como: 

𝝈𝒊𝒋 = 𝑪𝒐𝒗(𝒓𝒊, 𝒓𝒋) = 𝑬[(𝒓𝒊 − 𝑬[𝒓𝒊])(𝒓𝒋 − 𝑬[𝒓𝒋])] = 𝑬[(𝒓𝒊 − 𝝁𝒊)(𝒓𝒋 − 𝝁𝒋)] 

A correlação entre os ativos 𝒊 e 𝒋 é definida como: 

𝝆𝒊𝒋 =
𝝈𝒊𝒋

𝝈𝒊𝝈𝒋
 

Estamos agora em condições de calcular o risco (variância) de um portfólio de 

investimentos 𝑷, composto por 𝒏 ações, em que 𝝎𝒊 é a porcentagem dos recursos alocada a 

cada ativo (GRUBER et al., 2014, p. 56): 

𝝈𝑷
𝟐 = 𝑬[(𝒓𝑷 − 𝝁𝑷)𝟐] = 𝑬 [(∑𝝎𝒊𝒓𝒊 − ∑𝝎𝒊𝝁𝒊

𝒏

𝒊=𝟏

𝒏

𝒊=𝟏

)

𝟐

] = 𝑬 [(∑𝝎𝒊(𝒓𝒊 − 𝝁𝒊)

𝒏

𝒊=𝟏

)

𝟐

] 
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𝝈𝑷
𝟐 = 𝑬[∑𝝎𝒊

𝟐

𝒏

𝒊=𝟏

(𝒓𝒊 − 𝝁𝒊)
𝟐 + 𝟐 ∑ ∑ 𝝎𝒊𝝎𝒋

𝒏

𝒋=𝒊+𝟏

𝒏−𝟏

𝒊=𝟏

(𝒓𝒊 − 𝝁𝒊)(𝒓𝒋 − 𝝁𝒋)] 

𝝈𝑷
𝟐 = ∑(𝝈𝒊𝝎𝒊)

𝟐 + 𝟐 ∑ ∑ 𝝎𝒊𝝎𝒋𝝈𝒊𝒋

𝒏

𝒋=𝒊+𝟏

𝒏−𝟏

𝒊=𝟏

𝒏

𝒊=𝟏

 

Um dos problemas de se estimar o risco através da variância é que ela não leva em 

consideração o sinal da variação do preço de um ativo. Um ativo pode ter alto risco se o preço 

estiver subindo significativamente vários dias seguidos, por mais que, intuitivamente, isto seja 

uma boa indicação para os investidores. Para corrigir este problema, outras medidas foram 

criadas, notavelmente o VaR e o CVaR. Outras medidas ainda mais avançadas, como o EVaR 

(Entropic Value-at-Risk), existem mas não serão abordadas neste Trabalho de Formatura 

(consultar, por exemplo, AHMADI-JAVID, 2012).  

B. VaR (Value-at-Risk) 

Intuitivamente, o VaR (Value-at-Risk) é o cálculo da maior porcentagem de perda que um 

investidor pode ter no período seguinte, com um nível de confiança de 𝜶. O VaR possui três 

componentes: um período de tempo, um nível de confiança e uma porcentagem de perda.  

Evidentemente, o intervalo considerado (dia, semana, mês, ano) e o nível de confiança 

(90%, 95%, 99%) são escolhidos para cada situação analisada. Há diversas maneiras se calcular 

o VaR. Uma das mais diretas é através do histograma da frequência das faixas de valor em que 

se encontraram os riscos históricos, tal qual a figura abaixo: 

 

Figura 2 – Cálculo do VaR (Value-at-Risk) 
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A figura acima é o histograma de 400 números aleatórios, gerados segundo uma 

distribuição normal (𝜇 = 0, 𝜎 = 0.08). Para calcular o VaR relativo a um dia com um nível de 

confiança de 5%, basta encontrar a menor perda que ocorreu entre os 20 menores valores (5%). 

Este valor corresponde a 13%. Portanto, podemos estimar, com 95% de confiança, que a pior 

perda diária não vai exceder 13%.  

Em conclusão, definimos o VaR com confiança de 𝜶 como o (100- 𝜶)-ésimo percentil da 

distribuição de retornos históricos para uma distribuição 𝑿 como (ROCKAFELLAR, R. T.; 

URYASEV, S., 2000): 

𝑽𝒂𝑹𝜶 = 𝒎𝒊𝒏{𝒛|𝑭𝑿(𝒛) ≥ 𝜶} 

onde  𝑭𝑿(𝒛) = 𝑷{𝑿 ≤ 𝒛} 

C. CVaR (Conditional Value-at-Risk) 

O CVaR (Conditional Value-at-Risk) deriva do VaR, numa tentativa de ampliar a sua 

utilidade e conferir propriedades matemáticas mais interessantes. Intuitivamente, o VaR calcula 

quão ruim pode ser o desempenho de um portfólio, enquanto o CVaR calcula quanto dinheiro 

será perdido, caso o portfólio tenha um desempenho ruim. 

O CVaR é uma média ponderada entre o VaR e o valor das perdas que excedem o VaR. 

Para ilustrar a vantagem desta medida, podemos supor que a distribuição das perdas tenha uma 

cauda (à esquerda) que, apesar de ocorrer com baixa frequência, corresponda a uma perda 

enorme. Nestes casos, o VaR é incapaz de detectar quão grande será a perda nos piores casos, 

enquanto que o CVaR não terá esta deficiência. A figura abaixo, adaptada da anterior, ilustra 

esta situação. Podemos reparar que o tamanho das perdas, nos piores casos, é maior do que no 

histograma anterior. 

 
Figura 3 – Ineficiência do VaR 
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Para uma distribuição 𝑿 e um nível de confiança 𝜶, o CVaR é definido como 

(ROCKAFELLAR, R. T.; URYASEV, S, 2000): 

 

𝑪𝑽𝒂𝑹𝜶(𝑿) = ∫ 𝒛𝒅𝑭𝑿
𝜶(𝒛)

∞

−∞

 

 

 Onde: 

𝑭𝑿
𝜶(𝒛) = {

𝟎,
𝑭𝑿(𝒛) − 𝜶

𝟏 − 𝜶
,
} 

𝑭𝑿(𝒛) = 𝑷{𝑿 ≤ 𝒛} 

2.3. Modelo de Markowitz 

2.3.1 Histórico 

O primeiro modelo importante de otimização de portfólios foi desenvolvido por Harry Max 

Markowitz, um economista americano que recebeu o John von Neumann Theory Prize em 1989 

e o Nobel Memorial Prize in Economic Sciences em 1990.  

Em 1952, Markowitz publicou o artigo clássico “Portfolio Selection”, no Journal of 

Finance. Neste artigo, Markowitz deriva o que é chamado de Teoria da Média-Variância, 

afirmando que um investidor racional deve sempre maximizar o retorno para um dado nível de 

risco ou minimizar o risco para um dado retorno.  

2.3.2 Fronteira eficiente 

A aplicação deste princípio leva à criação de uma “fronteira eficiente”, na qual todos os 

pontos obedecem à regra supracitada: para um dado retorno, todos os pontos à direita da 

fronteira representam riscos excessivos; inversamente, para um dado risco, todos os pontos 

abaixo da fronteiram apresentam retornos menores do que o retorno do portfólio da fronteira. 

quando 𝒛 < 𝑽𝒂𝑹𝜶(𝑿) 

quando 𝒛 ≥ 𝑽𝒂𝑹𝜶(𝑿) 
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Figura 4 – Ilustração da fronteira eficiente 

Neste método, a medida do risco do ativo utilizada é a variância. Utilizamos o desvio-

padrão nas representações gráficas para facilitar a comparação com o retorno, já que ambos são 

expressos nas mesmas unidades. 

2.3.3 Formulação matemática 

A formulação clássica do modelo de Markowitz é (GRUBER et al., 2014, p. 102): 

Minimizar (a variância): 

𝝈𝑷
𝟐 = 𝝎⃗⃗⃗ 𝑻 𝜮 𝝎⃗⃗⃗  

Sujeito às restrições: 

𝝎⃗⃗⃗ 𝑻 𝝁⃗⃗ = 𝒓𝟎 

𝝎𝒊 ≥ 𝟎, ∀𝒊 

 𝟏⃗⃗ 𝑻 𝝎⃗⃗⃗ = 𝟏 

Onde: 

𝝈𝑷
𝟐  é a variância do portfólio 𝑷; 
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𝝎⃗⃗⃗  é o vetor dos pesos de cada elemento do portfólio; 

𝝁⃗⃗  é o vetor dos retornos esperados de cada elemento do portfólio; 

𝟏⃗⃗  é o vetor (1,1, … ,1); 

𝒓𝟎 é retorno desejado para o portfólio; 

𝜮 é a matriz das covariâncias dos elementos do portfólio. 

A matriz das covariâncias 𝜮 é uma matriz simétrica, cuja diagonal é a variância de cada 

elemento do portfólio e o restante é formado pelas covariâncias dos elementos dois a dois, ou 

seja, 𝝈𝒊𝒋 = 𝑪𝒐𝒗(𝒓𝒊, 𝒓𝒋). Este parâmetro do modelo será objeto de estudo deste artigo, por estar 

sujeito a incertezas. Pretende-se, portanto, analisar o grau de impacto das incertezas na solução 

ótima do modelo. 

O modelo de Markowitz consiste em, dado um retorno-alvo 𝒓𝟎, minimizar-se a variância 

𝝈𝑷
𝟐  do portfólio de investimentos.  

2.3.4 Solução analítica 

No caso elementar apresentado acima, o modelo de Markowitz possui uma solução 

analítica, dada por (ROUDIER, 2007): 

𝝎⃗⃗⃗ = 𝜮−𝟏(𝝁⃗⃗  𝟏⃗⃗ ) 𝑨−𝟏 (
𝒓𝟎

𝟏
) 

Onde 𝑨 é definida por: 

𝑨 = (
𝝁⃗⃗ 𝑻 𝜮−𝟏 𝝁⃗⃗ 𝝁⃗⃗ 𝑻 𝜮−𝟏 𝟏⃗⃗ 

𝝁⃗⃗ 𝑻 𝜮−𝟏 𝟏⃗⃗ 𝟏⃗⃗ 𝑻 𝜮−𝟏 𝟏⃗⃗ 
) 

 

Nos casos mais complexos, quando da existência de restrições sobre a composição do 

portfólio ou da consideração dos custos de transação envolvidos, não há soluções analíticas. 

Nestes casos, é necessário recorrer a algoritmos numéricos, cuja aplicação pode ser custosa 

computacionalmente. O custo computacional de utilizar estes algoritmos numéricos, 

especialmente no caso da utilização do CVaR como medida de risco, será recorrente nos 

capítulos subsequentes. 
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Mesmo após mais de 60 anos de publicação do artigo de Markowitz e de o modelo estar 

sujeito a incertezas, devido às estimações realizadas no cálculo do vetor de retornos 𝝁⃗⃗  e da 

matriz de covariâncias 𝜮, o modelo da Média-Variância ainda é a abordagem padrão para a 

resolução deste tipo de problema. No entanto, muitos pesquisadores vêm mostrando que o 

método não tem um bom desempenho, dado que ele põe peso excessivo para ativos com alto 

retorno esperado, independentemente de possíveis erros nos dados de entrada. Além disto, os 

portfólios gerados pelo modelo de Markowitz costumam ter um custo de transação muito 

grande, devido à excessiva realocação dos ativos. Com isto, muitos outros modelos foram 

estabelecidos, notavelmente a otimização robusta e o modelo de Black-Litterman. 

Entre os pesquisadores que lidaram com os problemas do modelo da Média-Variância, 

encontramos Michael J. Best e Robert R. Grauer (“On the sensitivity of mean-variance-

efficence portfolios to changes in asset means: Some analytical and computacional results”), 

bem como Richard C. Green e Burton Hollifield (“When will mean-variance efficient portfolios 

be well diversified?”). 

2.4. Otimização Bayesiana 

A abordagem clássica de Markowitz é composta de duas etapas: estima-se as distribuições 

que descrevem o mercado e então realiza-se a otimização, como se as distribuições fossem 

exatas. No entanto, as distribuições contêm incertezas, tornando a otimização sub-ótima. 

Adicionalmente, como o processo de otimização é extremamente sensível aos dados de entrada, 

a sub-otimalidade devida aos erros de estimação pode ser considerável (MEUCCI A., 2005). 

Para contornar este problema, otimização robusta incorpora no próprio modelo a existência 

de incertezas: o investidor escolhe a melhor alocação de portfólio no pior cenário possível 

dentro de um certo conjunto de incerteza (uncertainty set). A otimização bayesiana é, portanto, 

uma das maneiras de se aumentar a robustez das otimizações realizadas. 

Ainda de acordo com Meucci (2005), a formulação do modelo de média-variância, na 

versão robusta, é: 

𝝎𝒊 = 𝒂𝒓𝒈𝒎𝒂𝒙{𝐦𝐢𝐧
𝝁∈𝜽𝝁̂

{𝝎′𝝁}} 
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Sujeito a: 

𝝎 ∈ 𝓒,𝐦𝐚𝐱
𝚺∈𝜽𝚺̂

{𝝎′𝚺𝝎} ≤ 𝒗𝒊 

Onde: 

 𝜽𝚺̂ e 𝜽𝝁̂ são, respectivamente, os conjuntos de incerteza para 𝚺 e 𝝁. 

 𝓒 é um conjunto de restrições sobre os pesos do portfólio. 

 𝒗𝒊 são variâncias-alvo para o retorno do portfólio. 

O importante a se notar sobre esta formulação é que há restrições sobre a variância do 

portfólio, de forma que as incertezas já são levadas em consideração durante a otimização. 

2.5.  Rugosidade 

Os custos de transação podem ser grandes o suficiente para corroer significativamente a 

lucratividade de um dado portfólio, devido às taxas fixas e variáveis cobradas pelas corretoras 

de valores e pelas bolsas de valores. Consequentemente, quando calculada a evolução da 

composição do portfólio ótimo ao longo tempo, temos que, quanto menor é a variação desta 

composição, melhor para o investidor. Para medir a magnitude das variações, criamos uma 

métrica, a qual denominaremos de rugosidade 𝑹: 

𝑹 = 
𝟏

𝟐
∑ ∑|𝝎𝒊,𝒋+𝟏 − 𝝎𝒊,𝒋|

𝑴−𝟏

𝒋=𝟏

𝑵

𝒊=𝟏

 

𝝎𝒊,𝒋 é um número real entre 0 e 1 (ou 0 e 100%), que traduz a porcentagem do ativo 𝒊 

presente no portfólio ótimo do dia 𝒋. Na expressão da rugosidade acima, o portfólio é composto 

por um total de 𝑵 ações e o período da análise é de 𝑴 dias. A figura abaixo mostra a evolução 

dos 𝝎𝒊,𝒋 se aplicarmos o modelo clássico de Markowitz ao longo dos 70 dias de negociação que 

precedem 15 de maio de 2014, para um portfólio composto pelas 10 ações cujos símbolos estão 

à direita (bolsa NYSE): 
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Figura 5 – Exemplo de evolução da composição do portfólio ótimo 

A rugosidade é, portanto, uma medida da frequência e da amplitude dos “picos” da figura. 

Para os 35 primeiros dias de negociação acima, em que os portfólios estiveram relativamente 

estáveis, 𝑹 = 𝟏. 𝟎𝟒. Para os 35 dias finais, onde houve mais instabilidade na composição, a 

medida de rugosidade cresceu 45%, atingindo 𝑹 = 𝟏. 𝟓𝟏. 

2.6. Desempenho 

Para o cálculo do desempenho, utilizaremos o retorno tradicional 𝑹𝒕𝒓𝒂𝒅. Fá-lo-emos para 

poder comparar com outros investimentos, que são expressos desta forma, como o retorno da 

poupança. No entanto, removeremos por simplicidade o sobrescrito trad e adicionaremos os 

índices i e j, correspondendo ao ativo i e ao dia j:   

𝑹𝒊,𝒋 =
𝑷𝒊,𝒋−𝑷𝒊,𝒋−𝟏

𝑷𝒊,𝒋−𝟏
 

Na fórmula acima, 𝑷𝒊,𝒋 corresponde ao preço do ativo i no dia j.  

Para medir o desempenho do modelos, calculamos primeiramente os desempenhos em cada 

dia. Definimos o desempenho no dia 𝒋, 𝒅𝒋, como a média dos retornos dos ativos neste dia, 

ponderados pela parcela de investimento em cada uma: 
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𝒅𝒋 =  𝟏 + ∑𝝎𝒊,𝒋 ∙ 𝑹𝒊,𝒋

𝑵

𝒊=𝟏

 

   Em seguida, compomos estes desempenhos ao longo do tempo. Definimos 𝒅𝒋
′  como o 

produto dos desempenhos de todos os dias anteriores até o presente dia, para simular o que 

aconteceria se estivéssemos de fato investindo seguidamente na bolsa de valores: 

 𝒅𝒋
′ = (∏𝒅𝒌

𝒋

𝒌=𝟏

) − 𝟏 

Na expressão dos 𝒅𝒋, somamos 1 aos 𝒓𝒊,𝒋 para evitar que haja algum 𝒅𝒋 igual a zero, o que 

tornaria todos os 𝒅𝒋
′ subsequentes também iguais a zero, dada o produtório acima. Por fim, a 

medida de desempenho 𝑫 que propomos é a soma de todos os 𝒅𝒋
′: 

𝑫 = ∑𝒅𝒋
′

𝑴

𝒋=𝟏

 

Como 𝑴 é uma constante quando comparamos os modelos, esta medida de desempenho 

pode ser interpretada como a média dos desempenhos ao longo do tempo (multiplicada por 𝑴, 

naturalmente). Podemos, alternativamente, visualizar 𝑫 como a área sob a curva formada pelos 

𝒅𝒋
′ ao longo do tempo.  

Um exemplo de tal curva, quando utilizamos o modelo de otimização clássico de 

Markowitz ao longo dos 70 dias de negociação que precedem 15 de maio de 2014, com as 

mesmos ativos que foram listadas na Figura 1, é mostrada abaixo: 
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Figura 6 – A curva formada pelos 𝒅𝒋
′ . 

Subtraímos 1 na expressão dos  𝒅𝒋
′  para garantir que esta integral seja de fato negativa 

quando o desempenho é predominantemente negativo ao longo do tempo. Se não o fizéssemos, 

a curva acima estaria deslocada verticalmente, gerando possivelmente medidas de desempenho 

positivas em casos onde esta seria intuitivamente negativa. 

Em detrimento de calcular o desempenho apenas com base no valor final do portfólio, 

como é comum em investimentos quotidianos, a medida proposta utiliza todos os valores 

intermediários. Fizemos deliberadamente esta escolha, para poder diferenciar o desempenho de 

portfólios que possuam o mesmo valor no último dia da análise, porém com trajetórias 

diferentes ao longo do caminho. 

2.7. Algoritmos Evolutivos 

Segundo Mitchell (1996), algoritmos evolutivos são mecanismos heurísticos que 

mimetizam processos biológicos para resolver problemas matemáticos. Pertencentes ao campo 

de Inteligência Artificial da Ciência da Computação, estes métodos são geralmente usados para 

gerar soluções úteis – possivelmente ótimas – para problemas de busca ou otimização. 

Dentre os processos naturais que são mimetizados matematicamente, encontramos 

reprodução, herança genética, mutação, seleção e crossover. Inicialmente, geramos 

aleatoriamente um conjunto de possíveis soluções para o problema, que comporão uma 

“população”. Em seguida, esta população será avaliada segundo uma função de fitness (ou 

aptidão), que determinará quais são as melhores candidatas. A próxima população será então 
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obtida através dos processos citados acima, combinando as melhores soluções (reprodução), 

passando características para os “filhos” (herança genética), alterando as soluções 

aleatoriamente (mutação), etc. 

Segundo pontos levantados por Mitchell (1996), Goldberg (1989) e Roudier (2007), há 

pontos favoráveis e desfavoráveis na utilização de algoritmos evolutivos. Em particular, é um 

método excelente para avaliar funções descontínuas ou não-lineares, para as quais os métodos 

convencionais de otimização são ineficazes ou mesmo inaplicáveis, ou funções “caixa-preta”, 

como é o caso da que estudaremos neste artigo. Por outro lado, estes métodos têm o viés de não 

garantir a otimalidade da solução fornecida, dada a sua natureza heurística.  

2.8. Redes Neurais 

2.8.1 História 

Esta seção é baseada em Schmidhuber et al. (2012). No caso de classificação não-linear, 

os métodos mais simples de aprendizagem automática e inteligência artificial são pouco 

eficazes, devido a, por exemplo, problemas de sobreajuste (overfitting). É frequentemente o 

caso da regressão logística, um dos modelos mais simples de classificação  

Para contornar este problema nas aplicações mais complexas, diversas alternativas foram 

propostas ao longo do tempo, tais que regularização ou redução do número de variáveis 

explanatórias, porém poucas destas alternativas são capazes de aumentar significativamente a 

eficiência destes métodos. 

Uma alternativa mais poderosa para este tipo de problema são redes neurais, também 

chamadas de redes neurais artificiais. Este método de aprendizagem é uma tentativa de simular 

o funcionamento do cérebro humano. Apesar de ter sido amplamente popular na década de 80, 

a popularidade diminuiu próximo do ano 2000. Recentemente, no entanto, houve um aumento 

significativo do uso de redes neurais, graças ao advento de novas técnicas mais poderosas e 

computacionalmente eficazes. 

2.8.2 Conceito 

Como citado acima, redes neurais simulam o funcionamento do cérebro humano – mais 

especificamente, dos neurônios que compõem o sistema nervoso humano. A figura abaixo 

indica os principais componentes dos neurônios humanos: 
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Figura 7 – Esquema de um neurônio humano. 

Os dendritos funcionam como fios de entrada de dados (input wires) e os axônios como 

fios de saída de dados (output wires). Juntamente com os outros componentes, os dendritos e 

os axônios permitem que os neurônios funcionem como unidades relativamente autônomas de 

processamento, que se comunicam com os outros neurônios através do envio de impulsos 

elétricos. As terminações sinápticas são responsáveis pela transmissão destes impulsos 

elétricos. 

2.8.3 Modelo 

Definimos o vetor 𝒙 como o vetor entrada e o vetor 𝜽 como um vetor de parâmetros. Por 

exemplo, para um modelo com 3 variáveis de entrada, 𝒙 e 𝜽 seriam: 

𝒙 =  [

𝒙𝟎

𝒙𝟏
𝒙𝟐

𝒙𝟑

]   𝜽 =  [

𝜽𝟎

𝜽𝟏

𝜽𝟐

𝜽𝟑

] 

Onde 𝒙𝟎 é sempre igual a 1, comumente chamado de “bias unit”. Definimos também a 

função “sigmoide” ou “logística” 𝒉𝜽(𝒙) de acordo com a fórmula abaixo: 

𝒉𝜽(𝒙) = 𝒈(𝜽𝑻𝒙) =
𝟏

𝟏 + 𝒆−𝜽𝑻𝒙
 

O comportamento desta função nos permitirá classificar binariamente as entradas. O 

gráfico abaixo ilustra o comportamento da função: 

 
Figura 8 – Gráfico da função sigmoide ou “logística” 
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Para valores negativos de 𝒙, a função retorna valores abaixo de 0.5. Inversamente, para 

valores positivos de 𝒙, a função retorna valores acima de 0.5. Além disso, a função sigmoide 

possui duas assíntotas horizontais, nas ordenadas 𝟎 e 𝟏. Esta propriedade nos permite classificar 

a entrada em duas categorias, uma delas correspondendo aos valores de 𝒉𝜽(𝒙) abaixo de 0.5 e 

a outra correspondendo aos valores de 𝒉𝜽(𝒙) acima de 0.5. Além de classificar os valores de 𝒙, 

a função sigmoide também permite quantificar a classificação, isto é, verificar qual a 

probabilidade de que cada uma das classificações seja verdadeira. 

Suponha que estejamos tentando classificar e-mails em “spam” e “não-spam”. Após 

parametrizarmos corretamente o modelo, para cada e-mail – correspondente a um certo vetor 𝒙 

– teremos um valor de 𝒉𝜽(𝒙). Neste caso, podemos definir o modelo de tal forma que os valores 

de 𝒉𝜽(𝒙) correspondam à probabilidade de que o e-mail seja spam. Desta maneira, se 𝒉𝜽(𝒙) 

for maior do que 0.5, a probabilidade de que este e-mail seja spam é maior do que 50% e 

portanto classificamo-lo como spam. Senão, classificamo-lo como não-spam. 

2.8.4 Representação 

Abaixo, vemos uma possível representação de uma rede neural: 

 

Figura 9 – Representação de uma rede neural 

 O vetor 𝒙 é chamado de “camada de entrada” (input layer) ou simplesmente “camada 

1”.  

 O vetor 𝒂 corresponde à “camada escondida” (hidden layer) ou simplesmente “camada 

2”.  

 O resultado final, obtido através da função 𝒉𝜽(𝒙), é chamado de “camada de saída” 

(output layer) ou simplesmente “camada 3”.  

 Todas as camadas que estiverem entre a entrada e a saída são chamadas de “escondidas”.  

 Como o valor de  𝒙𝟎 é sempre igual a 1, não costumamos representá-lo no modelo. 

2.8.5 Arquitetura 

Chamamos de arquitetura o conjunto de camadas de uma rede neural. Por exemplo, a figura 

a seguir representa uma rede neural com uma camada adicional em relação à figura anterior. 
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Figura 10 – Arquitetura de uma rede neural 

Neste caso, o vetor 𝒙 corresponde novamente à camada 1, porém a saída corresponde à 

camada 4. Adicionalmente, temos duas camadas escondidas, correspondentes respectivamente 

aos vetores tri e bidimensionais (camadas 2 e 3). Recomenda-se que as camadas escondidas 

tenham um número de unidades da mesma ordem de grandeza que as unidades de entrada. 

Quanto mais camadas forem adicionadas, mais complexas ficam as possibilidades de 

aprendizado. Quanto à nomenclatura, denominamos redes neurais não-lineares auto-regressivas 

(NAR) as redes que utilizarem a série histórica de um certo dado para tentar prever o próximo 

dado desta série. Esta será o tipo de rede neural que utilizaremos neste trabalho. 

2.8.6 Função custo 

Definimos “função custo” como um indicador da qualidade do aprendizado. Quanto menor 

o valor da função, mais próximos estamos de um aprendizado perfeito. Portanto, para 

parametrizar o modelo, procederemos à minimização da função custo 𝑱, dada, no caso de uma 

rede neural, por: 

𝑱(𝜽) = −
𝟏

𝒎
[∑∑ 𝒚𝒌

(𝒊)𝒍𝒐𝒈 (𝒉𝜽(𝒙
(𝒊)))

𝒌
+ (𝟏 − 𝒚𝒌

(𝒊))

𝑲

𝒌=𝟏

𝒎

𝒊=𝟏

𝒍𝒐𝒈 (𝟏 − (𝒉𝜽(𝒙
(𝒊)))

𝒌
)]

+
𝝀

𝟐𝒎
∑∑ ∑ (𝜽𝒋𝒊

(𝒍)
)
𝟐

𝒔𝒍+𝟏

𝒋=𝟏

𝒔𝒍

𝒊=𝟏

𝑳−𝟏

𝒍=𝟏

 

Onde: 

 𝑳 é o número de camadas na rede. 

 𝒔𝒍 é o número de unidades da camada 𝒍, descontando a unidade que é sempre 1. 

 𝑲 é o número de classes, no caso de um classificador multi-classe (𝒔𝑳 = 𝑲). 

 O termo 
𝝀

𝟐𝒎
∑ ∑ ∑ (𝜽𝒋𝒊

(𝒍)
)
𝟐

𝒔𝒍+𝟏
𝒋=𝟏

𝒔𝒍
𝒊=𝟏

𝑳−𝟏
𝒍=𝟏  corresponde à regularização do modelo, para evitar 

sobreajuste (overfitting).  
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3. ESTUDO COMPARATIVO DE MODELOS DE OTIMIZAÇÃO DE PORTFÓLIO 

SELECIONADOS 

 

3.1. Metodologia 

O estudo comparativo deste capítulo está organizado em diversas etapas. Inicialmente, 

apresentaremos seis fatores que, quando combinados, determinam o funcionamento dos 

modelos de otimização que estudaremos. Estes fatores possuem naturezas diversas; alguns 

correspondem ao tipo de dados que serão utilizados, outros se referem à incorporação de 

incertezas no modelo e, ainda, alguns se referem aos métodos de cálculos dos parâmetros.  

Apresentados estes fatores, prosseguiremos à definição dos modelos em si. Naturalmente, 

cada modelo é fruto de uma combinação específica dos seis fatores supracitados. Em seguida, 

realizaremos uma análise destes modelos, do ponto de vista das métricas de rugosidade e 

desempenho definidas no Capítulo 2. Esta análise revelará qual o modelo com melhor 

desempenho, sob a nossa perspectiva. 

Por fim, a última etapa consistirá da utilização de algoritmos evolutivos para otimizar dois 

dos fatores, no caso do modelo de melhor desempenho. Veremos que esta abordagem trará 

vantagens significativas em termos de retorno ao longo do tempo. 

3.2. Fatores considerados nos modelos 

Três dos seis fatores que definem os modelos são “externos” a eles, ao passo que estão 

relacionados apenas ao seu modo de utilização. Tais fatores serão doravante denominados de 

extrínsecos. Os outros três fatores são “internos” aos modelos, dado que estão diretamente 

relacionados às hipóteses e modelos matemáticos utilizados no seu funcionamento. Estes serão 

chamadas de estruturais.  

3.2.1 Fatores extrínsecos 

Enunciaremos primeiramente os fatores extrínsecos ao modelo, pois são de mais fácil 

compreensão. 
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A. Tipo de janela (móvel ou fixa).  

Refere-se à maneira como atualizamos a base de dados quando da chegada de novas 

informações. Se excluirmos a informação mais antiga em detrimento da mais nova, 

denominamos o método como “janela móvel”, pois o intervalo de dados analisados está se 

alterando no tempo. Se adicionarmos a nova informação sem excluir a mais antiga, 

denominamos “janela fixa”.  

B. Perfil do investidor (conservador ou arrojado). 

O primeiro perfil (conservador) baseará as suas decisões em um amplo intervalo de tempo. 

No caso de janela fixa, o número mínimo de dias de negociação considerados será de 400, 

correspondendo a cerca de 1 ano e 7 meses. No caso de janela móvel, a quantidade de dias 

considerados será igualmente 400. 

O segundo perfil (arrojado), por sua vez, fundamentará as decisões em um intervalo mais 

curto. O número mínimo de dias considerados, no caso de janela fixa, será de 30, que é também 

o valor constante de dias utilizado no caso de janela móvel. 

Os perfis diferem também quanto ao retorno esperado. Como apresentado no Capítulo 2, 

os modelos de otimização de portfólio geram uma “fronteira eficiente”, na qual todos os pontos 

correspondem às melhores combinações de risco e retorno, isto é, cada ponto da fronteira 

corresponde ao portfólio de menor risco para um dado retorno ou, inversamente, ao portfólio 

de maior retorno para um dado risco. No entanto, quando geramos esta fronteira, devemos 

escolher apenas um destes portfólios. 

Esta escolha diferirá de acordo com o perfil do investidor. Escolhemos, no caso do perfil 

conservador, o portfólio cujo retorno esperado anual seja de 12% e, para o perfil arrojado, o 

aquele com 25% de retorno anual.  

Salientamos que estes perfis foram escolhidos com base em valores reais praticados 

por analistas de investimento. 

C. Informação utilizada (low, close ou high). 

Os modelos clássicos de otimização de portfólios costumam utilizar o preço de fechamento 

do ativo para todos os cálculos (retorno diário, desempenho do ativo, etc.). Neste artigo, será 

testado qual o efeito de se utilizar o preço mais baixo (low) ou o mais alto (high) que o ativo 

atingiu em um determinado dia, no lugar do preço de fechamento.  
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3.2.2 Fatores estruturais 

Os fatores estruturais, muito mais importantes de um ponto de vista conceitual do que os 

extrínsecos, serão o grande foco das análises.  

D. Método de cálculo dos retornos esperados (média histórica ou rede neural). 

Estudaremos duas opções quanto ao cálculo do retorno esperado de cada ativo ao longo do 

tempo. Primeiramente, utilizaremos a média dos retornos históricos, da maneira que 

apresentamos para o modelo de Markowitz tradicional no Capítulo 2.  

Alternativamente, utilizaremos redes neurais não-lineares auto-regressivas (NAR) para 

efetuar este cálculo (conferir Capítulo 2). Para cada ativo, uma sucessão de redes neurais foi 

criada: a cada 42 dias de negociação (2 meses em dias corridos), criamos uma rede nova levando 

em consideração os dados antigos conjuntamente com os novos dados que foram obtidos nestes 

últimos 42 dias. Esta nova rede substitui a anterior como modelo de previsão dos retornos 

futuros de cada ativo. 

A arquitetura escolhida está descrita abaixo: 

Camada de entrada: como a rede é auto-regressiva, a entrada é a mesma que a saída. 

Queremos prever o preço do ativo no dia seguinte, então a entrada consistirá dos preços 

nos dias anteriores. Escolhemos basear a predição nos preços ponderados dos 5 dias de 

negociação precedentes. O peso dos 5 preços é crescente, de acordo com quão recentes 

eles sejam. 

 

Conjunto de treinamento: 599 exemplos na primeira rede, ocorrendo atualização a 

cada 42 dias de negociação, que equivalem a 1 bimestre do ano. Como realizamos 3400 

previsões, criamos um conjunto de 80 redes neurais para cada ativo, cada uma das quais 

com complexidade e precisão crescentes. Portanto, a última rede criada possuía um 

conjunto de dados com 3360 exemplos. Separamos sempre 70% dos dados para 

treinamento, 15% para validação e 15% para os testes finais. 

 

Camada escondida: uma única camada, com 10 unidades. Percebemos que a precisão 

da rede não crescia com o aumento do número de unidades além de 10, nem com o 

acréscimo do número de camadas. 
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Camada de saída: vetor unidimensional, correspondente à previsão de preço para o dia 

em questão. 

 

A Figura abaixo mostra a representação no MATLAB da rede neural criada: 

 

Figura 11 – Representação MATLAB da rede neural 

 

Exemplificamos abaixo as predições da rede neural para a ação KO (Coca-Cola). A linha 

azul corresponde aos preços reais; a linha vermelha, às predições da rede. 

 

Figura 12 – Exemplo da capacidade de predição das redes neurais 
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Como vemos, as redes são muito precisas. No entanto, constataremos posteriormente que 

outras características da rede são pouco interessantes do ponto de vista prático, tornando pouco 

eficiente a sua utilização. 

E. Medida de risco utilizada (variância ou CVaR). 

Conforme apresentamos no Capítulo 2, há diversas medidas de risco presentes na literatura 

acadêmica. Em especial, destacamos a variância, escolhida inicialmente por Markowitz (1952), 

e o CVaR, proposto por Rockafellar e Uryasev (2000). 

A variância é, naturalmente, muito mais simples, em termos de cálculo e também de 

compreensão. O CVaR, por outro lado, requer a geração de cenários aleatórios, que rapidamente 

se tornam custosos computacionalmente. Neste trabalho, fizemos a escolha de gerar 10000 

cenários aleatórios com 95% de nível de confiança, equivalentes a um programa de otimização 

com 10000 restrições.  

F. Incorporação do risco (Markowitz ou Bayes). 

O modelo de Markowitz, tal qual apresentado no Capítulo 2, considera que todos os 

parâmetros do modelo não possuam incertezas. Supõe-se, portanto, que o vetor de retornos 𝝁⃗⃗  e 

a matriz de covariâncias 𝜮 sejam ambos exatos. 

No entanto, esta hipótese é considerada muito fraca por diversos autores (FABOZZI, F. J. 

et al., 2007). Dentre as diversas abordagens propostas para contornar este problema, ganharam 

destaque o modelo de otimização robusta bayesiana e o modelo de Black-Litterman. Neste 

trabalho, contraporemos o modelo clássico de Markowitz à otimização bayesiana, de maneira 

a verificarmos o desempenho e a rugosidade de cada uma delas. 

Utilizaremos o modelo proposto por Meucci (2005), com a variância como medida de risco, 

tal qual apresentamos no Capítulo 2. 

3.3. Modelos estudados 

Os seis fatores descritos acima geram um total de 72 combinações possíveis. Sendo 

impraticável estudar tal quantidade de combinações, restringimos o escopo deste trabalho a 48 

delas.  
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Dois fatores – o tipo de janela e o perfil do investidor – serão tratados separadamente dos 

demais. Enquanto os outros fatores são categóricos em vez de numéricos, estes dois fatores se 

referem diretamente a variáveis numéricas: o retorno desejado e o tamanho do intervalo de 

aquisição de dados. Esta característica particular os torna passíveis de otimização, justificando 

esta separação. Desta maneira, temos quatro combinações possíveis para estes dois fatores: 

1. Janela Fixa – Perfil Conservador 

2. Janela Fixa – Perfil Arrojado 

3. Janela Móvel – Perfil Conservador 

4. Janela Móvel – Perfil Arrojado.  

Quanto ao restante das escolhas, definiremos abaixo 12 combinações. Referir-nos-emos 

doravante a estas 12 combinações como “modelos”, conquanto a rigor elas não o sejam – afinal, 

os únicos “modelos” de fato estudados são Markowitz e Bayes. Este sutil abuso de linguagem 

simplificará a escrita e facilitará enormemente a compreensão. 

 

Denominação do 

modelo 

Informação 

utilizada 

Cálculo do 

retorno 

Medida de 

risco 

Incorporação do 

risco no modelo 

Markowitz (Close) Close Média Variância Não - Markowitz 

Markowitz (Low) Low Média Variância Não - Markowitz 

Markowitz (High) High Média Variância Não - Markowitz 

Bayes (Close) Close Média Variância Sim - Bayes 

Bayes (Low) Low Média Variância Sim - Bayes 

Bayes (High) High Média Variância Sim - Bayes 

CVaR (Close) Close Média CVaR Não - Markowitz 

CVaR (Low) Low Média CVaR Não - Markowitz 

CVaR (High) High Média CVaR Não - Markowitz 

Neural (Close) Close Rede neural Variância Não - Markowitz 

Neural (Low) Low Rede neural Variância Não - Markowitz 

Neural (High) High Rede neural Variância Não - Markowitz 

 

Tabela 1 – Os 12 modelos estudados 
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3.4. Detalhes Adicionais 

O software utilizado é exclusivamente o MATLAB R2013b, em especial as caixas de 

ferramenta de Finanças e de Otimização.  

O portfólio será composto pelas 10 ações da bolsa de Nova York (NYSE) abaixo:  

- Coca-Cola (KO)  - Wal-Mart (WMT)  - ExxonMobil (XOM) 

- Toyota Motors (TM)  - Procter & Gamble (PG) - Pfizer (PFE) 

- General Electric (GE)  - T&T (T)   - Citibank (C) 

- J. P. Morgan (JPM) 

Foram escolhidos ativos “blue chips” (com alta capitalização de mercado). Além disso, 

diversas indústrias estão representadas, para diversificar o portfólio e, assim, diminuir as 

covariâncias entre os ativos. 

Mostramos abaixo a interface de utilização desenvolvida: 

 

Figura 13 – Interface de utilização desenvolvida 

 

Salientamos que, na interface, há diversas funcionalidades que foram desenvolvidas 

durante versões intermediárias do trabalho e abandonadas na versão final. Um total de 1300 

linhas de código foram escritas. 
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3.5. Estudo de Rugosidade 

3.5.1 Situação 1: 70 dias de negociação 

A matriz das covariâncias, 𝜮, é um parâmetro importante para a determinação do portfólio 

ótimo. Verificaremos se os diferentes modelos se comportam diferentemente quando ocorrem 

pequenas alterações na matriz 𝜮. Em outras palavras, mediremos a robustez de 𝜮 em relação 

aos seus dados de entrada, através da medida de rugosidade explanada anteriormente. 

A Tabela 2 mostra o valor de rugosidade caso os 12 diferentes modelos fossem utilizados 

nos 70 dias de negociação que precedem o dia 15 de maio de 2014. 

 
Janela e perfil 

 

Modelo 
Móvel - 

Conservador 

Móvel - 

Arrojado 

Fixa - 

Conservador 

Fixa - 

Arrojado 
Média 

Markowitz (Close) 2.55 9.62 1.25 14.91 7.08 

Markowitz (Low) 2.51 6.76 1.14 14.97 6.34 

Markowitz (High) 2.23 8.53 1.18 14.66 6.65 

Bayes (Close) 3.42 9.63 1.43 12.08 6.64 

Bayes (Low) 3.38 6.62 1.37 10.70 5.51 

Bayes (High) 3.30 8.33 1.16 9.74 5.64 

CVaR (Close) 11.80 10.44 10.35 18.05 12.66 

CVaR (Low) 11.18 7.75 9.84 16.86 11.41 

CVaR (High) 10.78 9.01 8.57 15.51 10.97 

Neural (Close) 20.91 22.54 21.02 19.94 21.10 

Neural (Low) 20.00 23.76 20.24 20.90 21.23 

Neural (High) 20.85 22.84 20.74 21.50 21.48 

Média 9.41 12.15 8.19 15.82 11.39 

 

Tabela 2 – Estudo de rugosidade dos modelos (situação 1) 

 
 

Conduziremos a seguir uma Análise de Variância (ANOVA, dois fatores, sem réplica, 𝛼 = 

5%) dos resultados acima, para verificar se podemos afirmar que as diferenças observadas são 

significativas: 
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Fonte da 

variação 

Soma de 

Quadrados 

Graus de 

Liberdade 

Quadrado 

Médio 
F 

Nível 

descritivo 
F crítico 

Linhas 1805.5067 11 164.1370 21.6256 0.0000 2.0933 

Colunas 412.2090 3 137.4030 18.1033 0.0000 2.8916 

Residual 250.4680 33 7.5899    

       

Total 2468.1837 47     

 

Tabela 3 – Tabela ANOVA para o estudo de rugosidade dos modelos (situação 1) 

 

Os baixos valores de nível descritivo indicam que, com mais de 99,99% de significância, 

existem diferenças de rugosidade de acordo com tanto os fatores das linhas quanto com os 

das colunas. Repetimos o teste excluindo o CVaR e as redes neurais da análise e passamos a 

obter um nível descritivo de 58% para as linhas, mantendo o valor baixo para as colunas, 

indicando que eles eram os gerador da diferença entre as linhas. 

Concluímos que: 

 Os modelos com CVaR e redes neurais são significativamente mais rugosos do 

que Markowitz e Bayes. 

 O perfil conservador, independentemente do tipo de janela usada, possui 

rugosidade menor do que o perfil arrojado. 

 Otimização bayesiana de fato diminui a rugosidade dos portfólios, justificando a 

denominação “otimização robusta”. Nos modelos acima, há três pares que 

diferem apenas quanto à incorporação do risco. A saber: 

 Markowitz (Close) e Bayes (Close) 

 Markowitz (Low) e Bayes (Low) 

 Markowitz (High) e Bayes (High) 

Em todos os pares, temos uma média de rugosidade menor para o modelo que usa 

otimização bayesiana, indicando que esta seja de fato mais robusta. 

Ilustrativamente, providenciamos abaixo figuras que mostram as diferenças de rugosidade 

entre os quatro modelos básicos (Markowitz, Bayes, CVaR e Neural, usando close como 

informação, perfil conservador, janela móvel): 
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Figura 14 – Variação da composição dos portfólios segundo o modelo 
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A composição segundo o 

modelo clássico de Markowitz é 

bem estável ao longo do tempo.  

Neste intervalo específico, ela 

foi levemente mais estável do 

que com otimização bayesiana.  

A otimização bayesiana, por ser 

robusta e incorporar as 

incertezas, é muito estável ao 

longo do tempo. 

Como veremos a seguir, ela é, na 

média, um pouco mais estável 

do que o Markowitz clássico. 

A otimização com o CVaR, além 

de demandar um tempo 

computacional extremamente 

longo, é muito pouco estável. 

Podemos notar as “rugosidades” 

na figura ao lado. 

 

A otimização através de redes 

neurais foi ainda mais rugosa do 

que o CVaR. 

Veremos que esta é a 

desvantagem das redes, aos 

passos que o desempenho 

costuma ser muito bom. 
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3.5.2 Situação 2: 3400 dias de negociação 

Os resultados acima são relativos a um período de negociação de apenas 70 dias. 

Realizaremos a seguir um estudo para um período de 3400 dias de negociação, que se estende 

de 6 de novembro de 2000 a 15 de maio de 2014.  

Nos nossos testes, os modelos que utilizam o CVaR tiveram, em média um tempo de 

cálculo 38 vezes maior do que o modelo clássico de Markowitz. Por comparação, os modelos 

com rede neural demoram 20% a mais do que Markowitz, ao passo que otimização bayesiana 

toma um tempo 80% maior. Dada a alta rugosidade e o altíssimo custo computacional, 

decidimos excluir o CVaR da análise de 3400 dias de negociação. Relembramos que o tempo 

de cálculo é decorrente da criação de 10000 cenários aleatórios, correspondentes em seguida à 

resolução de um problema de otimização com 10000 restrições. 

A tabela abaixo mostra os resultados nesta segunda situação, para os outros nove modelos: 

 

 Janela e perfil  

Modelo 
Móvel - 

Conservador 

Móvel - 

Arrojado 

Fixa - 

Conservador 

Fixa - 

Arrojado 
Média 

Markowitz (Close) 208 618 100 73 250 

Markowitz (Low) 191 559 82 71 226 

Markowitz (High) 186 558 94 75 228 

Bayes (Close) 191 581 83 58 228 

Bayes (Low) 166 529 87 58 210 

Bayes (High) 170 521 76 52 205 

Neural (Close) 1082 1243 1041 1120 1121 

Neural (Low) 1069 1275 1046 1117 1127 

Neural (High) 1081 1300 1060 1128 1142 

Média 483 798 408 417 526 

   

Tabela 4 – Estudo de rugosidade dos modelos (situação 2) 

Analogamente ao que fizemos anteriormente, procedemos com uma análise de variância 

(dois fatores, sem réplica). Obtemos níveis descritivos menores do que 10−10 para as linhas e 

para as colunas, indicando que ambas são influentes sobre a rugosidade dos modelos. 
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3.6. Estudo de Desempenho 

3.6.1 Situação 1: 70 dias de negociação 

Realizamos a seguir a análise de desempenho dos modelos. Numa primeira situação, 

faremos novamente observações correspondentes aos 70 dias de negociação que precedem 15 

de maio de 2014. A Tabela 5 apresenta os resultados: 

 
Janela e perfil 

 

Modelo 
Móvel - 

Conservador 

Móvel - 

Arrojado 

Fixa - 

Conservador 

Fixa - 

Arrojado 
Média 

Markowitz (Close) 2.48 3.39 2.79 -2.13 1.63 

Markowitz (Low) 2.53 3.30 2.91 -0.84 1.97 

Markowitz (High) 2.51 3.08 2.80 -1.85 1.64 

Bayes (Close) 2.58 2.82 2.76 -0.66 1.87 

Bayes (Low) 2.37 3.31 2.81 -0.57 1.98 

Bayes (High) 2.58 2.82 2.76 -0.66 1.87 

CVaR (Close) 3.15 3.51 2.62 -1.16 2.03 

CVaR (Low) 2.54 3.06 2.54 -0.79 1.84 

CVaR (High) 2.26 2.80 3.02 -1.99 1.52 

Neural (Close) 4.05 4.46 4.01 4.55 4.27 

Neural (Low) 4.09 4.06 4.09 3.85 4.02 

Neural (High) 4.23 4.81 4.21 4.64 4.47 

Média 2.95 3.45 3.11 0.20 2.43 

 

Tabela 5 – Estudo do desempenho dos modelos (situação 1) 

Realizamos novamente uma análise de variância (dois fatores, sem réplica, 𝛼 = 5%). 

Concluímos, novamente, que tanto as linhas quanto as colunas são influentes sobre o 

desempenho da otimização de portfólio.  

Fonte da 

variação 

Soma de 

Quadrados 

Graus de 

Liberdade 

Quadrado 

Médio 
F 

Nível 

descritivo 
F crítico 

Linhas 54.9374 11 4.9943 5.0745 0.0001 2.0933 

Colunas 81.0408 3 27.0136 27.4474 0.0000 2.8916 

Residual 32.4784 33 0.9842    

       

Total 168.4566 47     

 

Tabela 6 – Tabela ANOVA para o estudo do desempenho dos modelos (situação 1)  
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Figura 15 – Desempenho ao longo do tempo segundo os modelos 
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Ilustramos abaixo o desempenho dos métodos básicos (close como informação) ao longo 

do tempo, perfil arrojado e janela móvel. 

 
Neste intervalo específico, 

Markowitz teve dificuldades de 

acompanhar o desempenho geral 

da bolsa.  

No entanto, próximo do fim, 

notamos uma boa recuperação. 

 

A otimização bayesiana teve 

desempenhos muito similares 

aos de Markowitz. 

Percebemos algumas diferenças 

sutis, sobretudo do dia 45 em 

diante. 

 

A otimização com o CVaR foi 

muito similar às duas acima. 

Notamos sutis diferenças em 

relação ao Markowitz nos 

últimos 10 dias do período. 

 

Similarmente ao Markowitz e ao 

Bayes, o modelo com Rede 

Neural teve alguma dificuldade 

no começo, porém ultrapassou o 

índice da bolsa no fim do 

período. 

 



58 

 

 

3.6.2 Situação 2: 3400 dias de negociação 

Analogamente ao que fizemos com a análise de rugosidade, repetimos o estudo para o 

intervalo de 3400 dias de negociação (13 anos) que precede 15 de maio de 2014. Excluímos, 

novamente, os modelos que utilizam o CVaR como medida de risco, devido às razões já 

mencionadas. Obtemos os resultados a seguir: 

 Janela e perfil  

Modelo 
Móvel - 

Conservador 

Móvel - 

Arrojado 

Fixa - 

Conservador 

Fixa - 

Arrojado 
Média 

Markowitz (Close) 982 -1680 -1934 -367 -750 

Markowitz (Low) 356 -1627 -1408 -667 -836 

Markowitz (High) 161 -1493 -1568 -704 -901 

Bayes (Close) 516 -1512 -1122 -332 -613 

Bayes (Low) 466 -1492 -1105 -197 -582 

Bayes (High) 357 -1257 -1197 -318 -604 

Neural (Close) 969 101 1116 743 732 

Neural (Low) 547 -172 1022 682 520 

Neural (High) 378 -111 682 412 340 

Média 526 -1027 -613 -83 -299 

 

Tabela 7 – Estudo do desempenho dos modelos (situação 2) 

 

Ao repetir a análise de variância (dois fatores, sem réplica) chegamos exatamente às 

mesmas conclusões que na situação 1: tanto as linhas quanto as colunas são influentes sobre o 

desempenho da otimização de portfólio.  

Notamos também que os desempenhos são quase todos negativos, exceto com a 

combinação Janela Móvel – Perfil Conservador e com a utilização de redes neurais. 

3.7. Estudo da razão Desempenho/Rugosidade 

Os resultados acima foram interessantes, porém inconclusivos. Analisar rugosidade e 

desempenho separadamente traz diversas limitações, já que as métricas devem ser consideradas 

conjuntamente quando de uma comparação holística entre modelos de otimização.  
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Tendo em vista este fato, propusemos uma nova métrica, que será a razão entre o 

desempenho e a rugosidade. Esta métrica, de fácil interpretação, traduz quanto de desempenho 

é trazido, em média, por cada variação na composição do portfólio.  

A literatura acadêmica vem tratando deste balanço há bastante tempo. Skaf e Boyd (2009), 

entre outros autores, propuseram um modelo de otimização de portfólio considerando os custos 

de transação já na função objetivo. O próprio MATLAB possui em sua biblioteca um modelo 

desta natureza. A razão pela qual optamos por não considerar custos de transação é puramente 

computacional: considerar tais restrições torna o tempo necessário para as análises 

substancialmente maior, dificultando análises tão amplas quanto as que este trabalho se propôs 

a fazer. Alternativamente, optamos por estudar a razão desempenho/rugosidade. Esta solução 

nos permitiu realizar comparações entre um número considerável (48) de modelos e, 

simultaneamente, verificar o impacto das mudanças na composição do portfólio.  

3.7.1 Situação 1: 70 dias de negociação 

Os resultados da análise para a primeira situação se encontram resumidos na Tabela 8: 

 
Janela e perfil 

 

Modelo 
Móvel - 

Conservador 

Móvel - 

Arrojado 

Fixa - 

Conservador 

Fixa - 

Arrojado 
Média 

Markowitz (Close) 0.97 0.35 2.24 -0.14 0.86 

Markowitz (Low) 1.01 0.49 2.55 -0.06 1.00 

Markowitz (High) 1.13 0.36 2.37 -0.13 0.93 

Bayes (Close) 0.75 0.29 1.93 -0.05 0.73 

Bayes (Low) 0.70 0.50 2.06 -0.05 0.80 

Bayes (High) 0.78 0.34 2.37 -0.07 0.86 

CVaR (Close) 0.27 0.34 0.25 -0.06 0.20 

CVaR (Low) 0.23 0.39 0.26 -0.05 0.21 

CVaR (High) 0.21 0.31 0.35 -0.13 0.19 

Neural (Close) 0.19 0.20 0.19 0.23 0.20 

Neural (Low) 0.20 0.17 0.20 0.18 0.19 

Neural (High) 0.20 0.21 0.20 0.22 0.21 

Média 0.55 0.33 1.25 -0.01 0.53 

Tabela 8 – Razão desempenho/rugosidade (situação 1) 
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Notamos claramente que, quando as métricas são consideradas conjuntamente, Markowitz 

e Bayes têm resultados significativamente melhores do que CVaR e Neural. 

3.7.2 Situação 2: 3400 dias de negociação 

Este será o teste final, responsável por decidir qual modelo será utilizado para otimizar a 

matriz energética brasileira: 

 Janela e perfil  

Modelo 
Móvel - 

Conservador 

Móvel - 

Arrojado 

Fixa - 

Conservador 

Fixa - 

Arrojado 
Média 

Markowitz (Close) 4.7 -2.7 -19.3 -5.1 -5.6 

Markowitz (Low) 1.9 -2.9 -17.2 -9.4 -6.9 

Markowitz (High) 0.9 -2.7 -16.6 -9.4 -7.0 

Bayes (Close) 2.7 -2.6 -13.5 -5.7 -4.8 

Bayes (Low) 2.8 -2.8 -12.8 -3.4 -4.0 

Bayes (High) 2.1 -2.4 -15.7 -6.1 -5.5 

Neural (Close) 0.9 0.1 1.1 0.7 0.7 

Neural (Low) 0.5 -0.1 1.0 0.6 0.5 

Neural (High) 0.3 -0.1 0.6 0.4 0.3 

Média 1.9 -1.8 -10.3 -4.2 -3.6 

 

Tabela 9 – Razão desempenho/rugosidade (situação 2) 

 

Discutamos primeiramente as combinações de janela e perfil. Exceto para Janela Fixa e 

Perfil Conservador, todas as combinações têm médias negativas. Realizamos um teste ANOVA 

(dois fatores, sem réplica, 𝛼 = 5%) para verificar se as diferenças são estatisticamente 

significativas, de acordo com a Tabela 10: 

Fonte da 

variação 

Soma de 

Quadrados 

Graus de 

Liberdade 

Quadrado 

Médio 
F 

Nível 

descritivo 
F crítico 

Linhas 327.5896 8 40.9487 2.3312 0.0520 2.3551 

Colunas 700.7483 3 233.5828 13.2980 0.0000 3.0088 

Residual 421.5664 24 17.5653    

       

Total 1449.9043 35     

 

Tabela 10 – Tabela ANOVA para desempenho/rugosidade (situação 1) 
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Concluímos que há diferenças entre as colunas. Portanto, na busca pelo melhor modelo de 

otimização, consideraremos exclusivamente a combinação Janela Móvel – Perfil Conservador, 

por ser a única de média positiva. 

Em seguida, passemos à discussão dos modelos (linhas). Notamos que todos os que 

utilizam redes neurais, embora evitem desempenhos negativos para quase quaisquer 

combinações de janela e perfil, têm resultados bastante aquém do esperado. É notável que a 

média dos modelos com redes neurais é abaixo da dos modelos Markowitz e Bayes; 

consequentemente, desconsiderá-los-emos. 

Resta-nos a difícil escolha entre o modelo clássico de Markowitz e o modelo de otimização 

robusta bayesiano. Se analisamos as médias, continuamos num impasse, pois elas são iguais a 

dois algarismos significativos. 

Optaremos, nestas condições, pelo modelo com maior valor para a razão 

desempenho/rugosidade: Markowitz (Close). A razão é, no mínimo, 70% maior do que a de 

qualquer outro modelo. Interessantemente, este é o modelo tradicional desenvolvido em 1952 

por Markowitz, sem nenhuma das melhorias que analisamos, que foram propostas pela 

literatura acadêmica ao longo de décadas. Segundo os resultados de nossos estudos, as 

propostas acadêmicas, embora capazes de melhorar pontos específicos do modelo, são 

incapazes de melhorar o balanço entre desempenho e rugosidade. 

A nossa interpretação é que as redes neurais têm um poder de predição tão grande que as 

variações na composição no portfólio se tornam bruscas, causando instabilidades ao longo do 

tempo. Isto justifica o fato de os desempenhos serem muitas vezes excelentes, porém 

acompanhados de altíssima rugosidade. 

No caso da otimização bayesiana, a interpretação é precisamente a oposta. Este modelo é 

extremamente robusto, com uma composição muito estável ao longo do tempo. Entretanto, esta 

robustez revela uma dificuldade de acompanhar as mudanças no mercado de capitais, de tal 

forma que, a longo prazo, o desempenho deixa fortemente a desejar. 
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Neste contexto, Markowitz mantém o seu papel como pilar unificador dos modelos, capaz 

de manter consistentemente um balanço quase perfeito entre qualidade de predição – traduzida 

em desempenho – e robustez do portfólio – traduzida em rugosidade. 

Em conclusão, a seção seguinte deste trabalho focará em trabalhar para tornar ainda mais 

poderosas as características do modelo de otimização de portfólio com melhores resultados, de 

acordo com as nossas métricas. 

3.8. Aprimoramento do modelo de Markowitz através de algoritmos evolutivos 

O modelo de melhor desempenho do estudo anterior foi Markowitz (Close), combinado 

com Janela Móvel e Perfil Conservador. Nesta seção, aprimoraremos o desempenho desta 

combinação através de algoritmos evolutivos.  

Como havíamos indicado no início deste capítulo, separamos os fatores Janela e Perfil 

porque eles eram numéricos e não categóricos. Este fato é importantíssimo, pois nos permitirá 

utilizar as poderosas técnicas conhecidas como algoritmos evolutivos para otimizá-los.  

A Janela e o Perfil definem dois valores numéricos: o tamanho da janela e o retorno 

desejado (que, relembramos, é o critério de escolha do portfólio ótimo). Para perfil conservador, 

o tamanho da janela era de 400 dias e o retorno desejado era de 12% ao ano. Neste contexto, o 

nosso atual objetivo é encontrar os valores de tamanho de janela e de retorno desejado que 

maximizem o potencial de geração de valor do modelo. Em outras palavras, queremos encontrar 

a combinação de valores que irá maximizar a nossa medida de desempenho ao longo dos 13 

anos de negociação que estamos estudando. 

Para fazê-lo, separamos os dados em dois conjuntos, tal qual sugerido pela revisão 

bibliográfica (conferir Capítulo 2). Extraímos da bolsa de valores americanas dados relativos a 

um período total de 4000 dias de negociação e separamos cerca de 20% para rodar o algoritmo 

de otimização. Os dias restantes (3400) serão o conjunto onde verificaremos a qualidade da 

nossa otimização. Relembramos que essa separação do conjunto de dados é recomendada para 

evitar “overfitting”, isto é, que a nossa otimização seja excelente, porém pouco generalizável 

para conjuntos de dados diferentes daqueles nos quais realizamos a otimização. 

Utilizamos o algoritmo evolutivo presente na Optimization Toolbox do MATLAB 2013b, 

configurando-o de acordo com os parâmetros abaixo: 
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Classificação Parâmetro Escolha 

População Tamanho 20 

  Função de criação Dependente das restrições 

Seleção Função de seleção Uniforme estocástica 

Reprodução Elite count 1 

  Fração de crossover 0.8 

Mutação Função de mutação Dependente das restrições 

Crossover Função de crossover Scattered 

Migração Direção Forward 

 Fração 0.2 

  Intervalo 20 

Restrições Penalidade inicial 10 

  Fator de penalidade 100 

Fitness scaling Scaling function Rank 

Critérios de parada Gerações 60 

 Limite de tempo Infinito 

 Limite de fitness - Infinito 

 Stall generations 50 

 Stall time limit Infinito 

 Tolerância da função 1.00E-06 

  Tolerância não-linear 1.00E-06 

 

Tabela 11 – Parâmetros do algoritmo evolutivo (MATLAB). 

 

Os parâmetros mais importantes são o tamanho da população – 20 indivíduos – e o número 

total de gerações – 60 –, que compõem o número total de indivíduos durante a otimização – 

1200. Obtivemos, ao final destas 60 gerações, a combinação de 250 dias para a janela e 20% 

para o retorno. Com estes parâmetros, o desempenho da otimização passa a ser 4231.9150, 

contra 981.7624 obtidos com os parâmetros anteriores – uma melhora substancial de 331%. 

Curiosamente, 250 dias de negociação equivalem a, aproximadamente, 1 ano em dias corridos. 
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Para verificar a validade destes resultados, recalculamos o desempenho e a rugosidade de 

todos os modelos, de acordo com estes novos parâmetros. Sabemos que esta comparação não 

é justa, dado que os valores foram otimizados especificamente para Markowitz (Close), porém 

fá-la-emos não obstante este fato, para não fugir do escopo do trabalho. Obtemos a tabela 

abaixo: 

 

Modelo Desempenho Rugosidade Desempenho/Rugosidade 

Markowitz (Close) 4232 291 14.6 

Markowitz (Low) 2354 278 8.5 

Markowitz (High) 2599 241 10.8 

Bayes (Close) 2648 258 10.3 

Bayes (Low) 1959 244 8.0 

Bayes (High) 2048 233 8.8 

Neural (Close) 989 1135 0.9 

Neural (Low) 570 1122 0.5 

Neural (High) 423 1128 0.4 

 

Tabela 12 – Resultados da otimização para todos os modelos 

 

Verificamos, apesar das melhoras enormes em todos os modelos, que o modelo Markowitz 

(Close) obteve, indiscutivelmente, os melhores resultados. Quanto à rugosidade, notamos 

novamente que os modelos bayesianos são levemente menos rugosos (mais robustos) do que o 

modelo clássico de Markowitz. Comparamos abaixo os desempenhos (𝒅𝒋
′), para Markowitz 

(Close), antes e após a otimização através de algoritmos evolutivos: 

 

 
Figura 16 – Desempenho de Markowitz antes da otimização 
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Figura 17 – Desempenho de Markowitz depois da otimização 

 

 Observação: o atual índice geral da NYSE (linha vermelha) foi criado em 2004, daí a sua 

ausência no começo do período de estudo. 

Relembramos que a linha azul corresponde ao atual valor do portfólio, em múltiplos do 

valor inicial investido. Em particular, vemos que, ao término dos 3400 dias, o valor do portfólio 

foi multiplicado por 3.7: R$10.000 investidos em 2000 ter-se-iam tornado R$37.000 em 2014. 

Consideramos esta melhora de desempenho de 331% como prova do poder de se utilizar 

algoritmos evolutivos no contexto de otimização de portfólio. 
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4. OTIMIZAÇÃO DA MATRIZ ENERGÉTICA BRASILEIRA 

4.1. Mercado de energia no Brasil 

Iniciamos este capítulo com uma breve explanação da dinâmica da geração de energia no 

Brasil. A matriz energética brasileira está fortemente concentrada em usinas hidrelétricas, com 

mais de 70% da energia proveniente desta fonte em 2013 (Balanço Energético Nacional, 2014):  

 

Figura 18 – Matriz energética brasileira (2013) 

 

Notamos que a proporção de fontes renováveis (excetuando hidrelétrica) é baixíssima, com 

8% advindo de usinas de incineração de biomassa e 1% de parques eólicos. Salientamos 

também que, diferentemente de países europeus, o Brasil nunca optou por fortalecer a produção 

por fontes nucleares, que ainda hoje é de apenas 2%. Quanto à energia térmica convencional 

fóssil, ela é considerada menos competitiva economicamente do que a hídrica ou as demais 

fontes renováveis (REGO, 2012), justificando a sua baixa contribuição.  

O órgão governamental regulador deste mercado é a ANEEL (Agência Nacional de Energia 

Elétrica), que organiza leilões dos recursos naturais do país que possam ser usados como fontes 

de energia. Nestes leilões, a empresa que atender as especificações do edital e der o menor lance 

para o preço da energia comercializada, em R$/MWh, receberá a concessão da geração de 

energia durante um período que costuma durar entre 30 e 40 anos.  

Caso a empresa tenha mais capacidade de geração do que a que está sendo fornecida ao 

SIN (Sistema Elétrico Nacional), ela pode negociar a energia excedente no chamado mercado 
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“spot”. Este mercado é similar à bolsa de valores, no que tange à determinação de preços, que 

ocorre com base em oferta e procura. Empresas com alto consumo de energia elétrica 

(produtoras de alumínio ou aço, por exemplo) podem negociar a compra de energia elétrica no 

mercado spot, diretamente com as usinas geradoras, como alternativa a utilizar exclusivamente 

a energia elétrica proveniente do SIN.  

4.2. Planejamento energético baseado em gestão de portfólios 

Modelos de análise de portfólio são amplamente utilizados por investidores para alocar os 

recursos de maneira a garantir os retornos esperados, a despeito das condições econômicas 

(Roudier, 2007). Para fazê-lo, são contrabalanceados os retornos e os riscos de cada ativo, 

escolhendo-se a combinação que maximiza o retorno para um dado risco escolhido pelo 

investidor ou, alternativamente, a que minimiza o risco para um dado retorno. Neste capítulo, 

aplicaremos estes modelos à matriz energética do Brasil. Portanto, é necessário primeiramente 

interpretar de forma correta o que representam os parâmetros do modelo neste novo contexto. 

Enquanto os modelos de teoria de portfólios maximizam o retorno – dado um nível de 

risco –, o interessante, do ponto de vista de geração de energia, seria minimizar o custo. Este 

fato é facilmente corrigido, pois há uma relação muito simples entre o retorno e o custo de uma 

fonte de energia. O retorno é a geração por unidade monetária investida (MWh/R$), ao passo 

que o custo é o investimento por unidade de energia produzida (R$/MWh). Portanto, para 

podermos utilizar o modelo clássico de maximização do retorno, basta interpretarmos o retorno 

como o inverso do custo e utilizarmos os dados relativos aos custos. 

Conforme Awerbuch e Berger (2003), no caso de políticas energéticas, três pontos são 

fundamentais à matriz energética de um país: suprir a demanda, ter baixo custo e apresentar 

poucos riscos. Quanto à demanda, os atuais modelos de previsão são considerados 

suficientemente precisos, dado que a evolução do consumo é sempre gradual, sem saltos 

abruptos. Consequentemente, as políticas governamentais podem ser feitas com base nestas 

previsões e de acordo com um coeficiente de segurança a ser estabelecido. Além disto, países 

podem, em caso de necessidade, aumentar a sua capacidade energética temporariamente, 

através de importação ou de utilização de fontes intermitentes. 

Quanto aos outros dois aspectos fundamentais – custo e risco –, a análise se torna 

substancialmente mais complexa. Como geração de energia envolve necessariamente a 

realização de escolhas entre tecnologias concorrentes, a comparação de custos deve ser precisa 
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e padronizada, de forma a mitigar distorções provenientes de cadeias de valor diferentes. 

Adicionalmente, como cada tecnologia têm custos de implementação e operação, eficiência, 

duração do ciclo de vida, pegada ecológica e fator de capacidade3 distintos, devem ser 

estabelecidas métricas comparativas abrangentes e multidimensionais.   

Em relação aos riscos, estes se classificam essencialmente em duas classes: os riscos de 

disfunção do fornecimento e os de aumentos inesperados dos custos. Como vimos 

anteriormente, os riscos de disfunção do fornecimento podem ser reduzidos através do 

coeficiente de segurança em relação à demanda prevista e do uso eventual de fontes 

intermitentes ou mesmo de importação. No entanto, o segundo tipo de risco, calculado através 

da variância dos custos ao longo do tempo, requer uma análise profunda de diversos fatores, 

qualitativos e quantitativos, macro e microeconômicos. 

Segundo Awerbuch e Spencer (2007), flutuações no preço do petróleo são exemplos de 

riscos relacionados a custos. Tais flutuações são capazes de reduzir a atividade econômica de 

todo um país, no caso de nações altamente dependentes de importação de petróleo. Até mesmo 

pequenos aumentos percentuais podem trazer perdas significativas, como desemprego e 

desaceleração da economia. Desta maneira, a redução deste tipo de risco é essencial para a 

escolha de uma boa matriz energética. 

Ao aplicarmos a teoria de portfólios à produção de energia, determinamos portfólios que 

têm baixo custo e que, simultaneamente, minimizam a exposição de um país a flutuações de 

custos. Esta abordagem é completamente diferente da tradicional utilizada pelos governantes, 

que consiste em focar exclusivamente na minimização dos custos. A superioridade da 

abordagem de portfólios provém do fato de que é impossível prever qual será, daqui a 30 anos, 

a tecnologia mais barata. Consequentemente, focar exclusivamente em fontes de energia baratas 

                                                 

 

3 Fator de capacidade é a razão entre a energia de fato produzida durante um certo período e a energia que 

teria sido produzida se fosse possível operar uma usina produtora de energia em capacidade nominal total durante 

todo o período. Por exemplo, parques eólicos possuem fator de capacidade da ordem de 30%, dado que durante 

aproximadamente 70% do ano os ventos são insuficientes para produzir quantidades significativas de energia. 

Usinas nucleares têm fatores de capacidade que chegam a 90% (Electric Power Annual, 2009). 
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é análogo a investir durante 30 anos na ação que teve o melhor desempenho no dia em que 

tomamos a decisão (AWERBUCH, 2000).  

O mesmo ponto é levantado por Corey (1981). A otimização da matriz energética de um 

país pressupõe a escolha de tecnologias robustas, de forma a diminuir a susceptibilidade à 

influência de fatores externos. Esta é uma característica inerente aos modelos de otimização de 

portfólio presentes na literatura acadêmica e analisados nos capítulos anteriores deste trabalho. 

Em suma, propomos a escolha de um “portfólio eficiente” – em termos do balanço entre 

custos e riscos – no lugar dos típicos e simplistas “portfólios de baixo custo”. Para fazê-lo, 

utilizaremos o modelo tradicional de Markowitz, adaptado a este contexto:  

 Fatores extrínsecos: Janela e perfil não têm sentido neste contexto. Utilizaremos 

todos os dados da base, porque ela contém apenas 19 datas. A escolha de um único 

portfólio da fronteira será realizada de uma maneira discutida posteriormente, e não 

simplisticamente selecionando um retorno alvo. A base BNEF possui três cenários 

(baixo custo, alto custo e intermediário). Utilizamos o intermediário, já que, nas 

análises do Capítulo 3 foi a utilização do preço Close que trouxe mais benefícios. 

 Fatores estruturais: utilizaremos Markowitz tradicional, ou seja, calculado com a 

média dos retornos e a variância como risco e sem incorporar as incertezas. 

Exemplificamos abaixo a fronteira eficiente (conferir Capítulo 2) calculada no contexto de 

matrizes energéticas. No eixo das ordenadas, temos o retorno em KWh/R$, e, no eixo das 

abscissas, o risco, também em KWh/R$. 

 

Figura 19 – Fronteira eficiente no contexto de geração de energia 
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4.3. Modelo de custos utilizado 

Para obter os dados numéricos necessários aos algoritmos de otimização de portfólio, 

faremos uso de um modelo denominado LCOE (“custo nivelado da energia”, do inglês levelized 

cost of energy). Segundo Branker et al. (2011), o LCOE é uma métrica muito utilizada quando 

da comparação entre diferentes formas de geração de energia, correspondendo conceitualmente 

à razão entre o custo total de um empreendimento (descontado no tempo) e o total de energia 

elétrica que ele gerará (também descontado no tempo): 

LCOE =
Custo total do empreendimento ao longo do ciclo de vida

Produção total de energia ao longo do ciclo de vida
 

A seguinte fórmula é proposta para o cálculo exato do LCOE: 

𝑳𝑪𝑶𝑬 =
∑

𝑰𝒕 + 𝑴𝒕 + 𝑭𝒕

(𝟏 + 𝒓)𝒕
𝒏
𝒕=𝟏

∑
𝑬𝒕

(𝟏 + 𝒓)𝒕
𝒏
𝒕=𝟏

 

Onde: 

 𝑰𝒕 são os gastos com investimentos no ano 𝒕. 

 𝑴𝒕 são os gastos com manutenção e operações no ano 𝒕. 

 𝑭𝒕 são os gastos com combustíveis no ano 𝒕. 

 𝑬𝒕 é a energia gerada no ano 𝒕. 

 𝒓 é a taxa de desconto escolhida. 

 𝒕 é tempo de vida do sistema. 

O resultado do cálculo é geralmente expresso em dólares por megawatt-hora ($/MWh). 

Conceitualmente, este custo é equivalente ao preço médio por MWh que teria de ser pago pelos 

consumidores para que o realizador do projeto obtivesse uma taxa de retorno igual à taxa de 

desconto escolhida. 

De acordo com Branker et al. (2011), LCOE é frequentemente usado para contrapor o custo 

de geração de energia através de diferentes tecnologias. Em particular, ele pode ser utilizado 

para determinar qual a fonte de energia mais eficiente, do ponto de vista de recursos investidos. 

O modelo também pode ser empregado para comparar o custo da energia gerada por fontes 
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novas com o custo de fontes já existentes. Neste contexto, ele é extremamente útil em termos 

de decisões sobre a matriz energética de um país, para decidir como as demandas futuras serão 

atendidas e quais tecnologias devem ser apoiadas. 

Ao somar todos os custos, o método contempla também as diferenças estruturais entre as 

tecnologias. Energias renováveis tipicamente têm um investimento inicial altíssimo, seguido de 

custos de combustíveis próximos de zero; plantas de gás natural, por outro lado, têm custos de 

combustíveis elevados, apesar do investimento inicial ser baixo. Estas e outras diferenças são 

todas levadas em consideração no cálculo. 

Além de permitir a comparação entre diferentes tecnologias, o LCOE permite também a 

comparação de variações da mesma tecnologia. Empresas podem, por exemplo, estudar qual é 

a especificação de células fotovoltaicas que trará o maior retorno, considerando o ciclo de vida 

total do projeto, ou analisar quais as áreas onde pesquisas de redução de custo trarão mais 

retornos. O método permite até mesmo a comparação entre os custos de geração de energia com 

o valor efetivamente pago pelos usuários na conta de energia. 

Naturalmente, há limitações para este método. Branker et al. (2011) ressalta que, a despeito 

das vantagens deste método, outras métricas também devem ser utilizadas para avaliar o 

projeto, como o triple bottom line. Segundo esta metodologia, além do retorno financeiro, são 

ponderados os impactos sociais e ambientais. 

Além dos custos enunciados na fórmula acima, é possível incluir custos de emissão de 

gases de efeito estufa. Segundo Meneguin (2012), os custos de emissão de gases de efeito estufa 

podem ser particularmente significativos no caso dos países desenvolvidos. O Protocolo de 

Quioto estabeleceu três mecanismos de redução da emissão de gases estufa, conhecidos como 

Comércio de Emissões, Implementação Conjunta e o Mecanismo de Desenvolvimento Limpo 

(MDL). No caso de países em desenvolvimento, como o Brasil, apenas o MDL é atuante. 

Portanto, diferentemente dos países desenvolvidos, o Brasil não possui a meta de reduzir a 

emissão de gases estufa em pelo menos 5,2% em relação aos níveis de 1990 no período entre 

2008 e 2012.  

A despeito da ausência desta meta e da tributação que a acompanharia, o MDL ainda 

incentiva as instituições brasileiras a reduzir a emissão de gases estufa: o mecanismo concede 

às instituições o direito de receber créditos de carbono para comercializar. Além do gás 

carbônico, outros gases de efeito estufa podem ser “convertidos” numa quantidade de carbono 
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equivalente, de tal forma que a iniciativa é ampla quanto à redução da pegada ecológica das 

empresas.  

Pessoas jurídicas podem propor à Comissão Executiva do MDL um projeto de redução de 

gases, independentemente da natureza jurídica da instituição (governos, ONGs, cooperativas, 

associações e empresas). Depois que um projeto filiado ao MDL entra em vigor, o Conselho 

Executivo do MDL emite, de tempos em tempos, a Redução Certificada de Emissões (RCE), 

documento eletrônico que especifica os créditos de carbono alcançados por cada projeto. Estas 

RCEs equivalem à redução de uma tonelada de gás carbônico.  A bolsa de valores brasileira, 

BM&FBovespa, possui um ambiente eletrônico de negociação desenvolvido para viabilizar o 

fechamento de negócios envolvendo RCEs gerados por projetos de MDL.  

Ainda de acordo com Meneguin (2012), o sucesso desta medida tem sido considerado 

relevante no Brasil: apenas a usina termelétrica a biogás instalada no Aterro Bandeirantes, 

localizado em Perus, permitiu à Prefeitura de São Paulo a comercialização de 1.262.793 RCEs 

até 2012. Desta maneira, a comercialização dos RCEs se tornou uma fonte de arrecadação 

importante para instituições como a Prefeitura de São Paulo. Notavelmente, em setembro de 

2007, o banco holandês Fortis Bank NV/SA desembolsou num único lance R$ 34 milhões pelo 

lote de 808.450 créditos de carbono colocados em negociação pela Prefeitura de São Paulo na 

Bolsa de Mercadorias e Futuros.  

Em conclusão, no caso dos países desenvolvidos, os custos de emissão de gases de efeito 

estufa são diretos, dado que as empresas são taxadas caso a produção esteja acima do limite 

estabelecido pelas políticas governamentais locais. Diferentemente, as empresas localizadas em 

países em desenvolvimento não são taxadas. Em vez disto, elas podem usufruir da receita 

adicional gerada pela comercialização de RCEs e, naturalmente, interpretar esta receita como 

redução dos custos de geração. As empresas de países desenvolvidos que produzem menos do 

que o limite legal estabelecido também podem comercializar créditos de carbono similares às 

RCEs brasileiras. Desta maneira, é necessário considerar no modelo LCOE a influência 

financeira – positiva ou negativa – das políticas internacionais de redução de gases de efeito 

estufa. 
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4.4. Metodologia 

Utilizaremos dados provenientes da BNEF (Bloomberg New Energy Finance) e da 

BM&FBovespa (a bolsa de valores brasileira). 

A BNEF tem calculado e registrado, desde 2009, os custos nivelados de energia (LCOE) 

para 19 fontes, incluindo subclasses de uma mesma tecnologia. Como o modelo utilizado é 

rigorosamente o mesmo para todas as tecnologias, a padronização dos dados permite 

comparações consistentes entre tecnologias e entre datas. As outras bases de dados que 

encontramos são menos abrangentes ou menos pragmáticas.  

Salientamos, no entanto, que os dados são uma média global. Infelizmente, não existem 

empresas brasileiras que compilem sistematicamente dados nacionais sobre geração de energia 

para fins de criação de uma bases de dados pública de LCOE como a Bloomberg. Tivemos, 

consequentemente, que recorrer às médias internacionais, uma abordagem que julgamos 

suficiente precisa, dado o escopo deste trabalho. 

Esta metodologia difere da adotada por Losekann et al. (2013) em um dos artigos mais 

recentes focados em otimização da matriz energética brasileira do ponto de vista de teoria de 

portfólios. Para contornar o grave problema de escassez de dados sobre o Brasil, os autores 

recorreram a simulações de Monte Carlo. Para cada tecnologia, eles simularam os custos de 

acordo com um conjunto de parâmetros (eficiência, fator de capacidade, custos de investimento 

e operação, preço de emissão de gás carbônico, etc.). Esta abordagem, nas palavras dos autores, 

se trata de uma aproximação empírica: “Since no one knows the exact value of these 

parameters, we postulate a probability distribution for each of them based on the information 

available (IEA, NEA, questions to experts in Brazil)” (LOSEKANN et al., 2013).  

Comparamos os dados obtidos pelos autores deste artigo com os preços pagos pelo governo 

nos leilões brasileiros. Os preços simulados de geração a partir de usinas hidrelétricas grandes 

e pequenas são, respectivamente, 50,24 e 69,09 dólares por MWh. No entanto, entre 16 de 

dezembro de 2005 e 14 de dezembro de 2012, o preço médio pago pelo MWh, segundo os dados 

públicos da ANEEL foi de, respectivamente, 83 e 134 reais. A despeito da taxa de câmbio 

utilizada, vemos que a diferença entre as tecnologias segundo Losekann et al. é de 37,5%, 

enquanto que segundo a média das concessões é de 61,4%. Julgamos esta disparidade muito 

grande para um país onde 71% da geração de energia provém de usinas hidroelétricas (Balanço 

Energético Nacional, 2014). 
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Os dados da BNEF nos permitiram evitar outro problema encontrado por Losekann et al. 

Dada a escassez de dados, eles tiveram que limitar o estudo a apenas 8 fontes (gás, carvão, 

nuclear, óleo combustível, biomassa, eólica e hidrelétrica grandes e pequenas). A Bloomberg 

compila dados para um total de 19 fontes, incluindo fontes mais modernas e suas subclasses, 

como células fotovoltaicas à base de silício e de filmes finos, três tipos diferentes de biomassas 

e ondas do mar e marés4. 

Finalmente, evitamos a abordagem de Losekann et al. porque os autores misturaram dados 

das simulações de Monte Carlo que eles próprios fizeram com dados do artigo de Awerbuch e 

Spencer de 2007. Conquanto eles tenham sido capazes de estimar os custos e os riscos de cada 

uma das 8 tecnologias, eles tiveram que recorrer aos dados publicados por Awerbuch e Spencer 

para obter valores para as covariâncias entre as variáveis. Julgamos que esta metodologia seja 

pouco precisa, dada que os dados e contextos de cada artigo são diferentes. Ao utilizarmos 

exclusivamente a base Bloomberg, asseguramos completa consistência entre os valores 

estimados para custos, riscos e covariâncias. 

 Como discutido anteriormente, o modelo LCOE calcula os custos de produção de acordo 

com a fonte. No entanto, como otimizaremos a matriz energética de todo um país, não são os 

custos incorridos pelas empresas que importam, mas sim o preço pago pelo governo por unidade 

de energia. Em outras palavras, o custo do modelo de otimização não é o mesmo custo do 

modelo LCOE, mas sim o preço de venda da energia.  

A diferença entre o custo total dos produtos vendidos e receita total de vendas é a margem 

bruta das empresas. Das diferentes margens (bruta, operacional, líquida, EBIT/LAJIR, 

EBITDA/LAJIDA, etc.) de uma empresa, julgamos que a mais conveniente para a nossa 

aproximação seja a margem bruta, pois esta corresponde exatamente às receitas totais da 

empresa, descontado o custo dos produtos vendidos (CPV). Desta maneira, podemos utilizar a 

                                                 

 

4 Os mecanismos de geração de energia por ondas do mar e por marés são distintos, dado que as ondas do 

mar são originárias essencialmente do vento, enquanto que as marés advêm das forças gravitacionais entre a Terra, 

a Lua e o Sol. 
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margem bruta como aproximação da diferença entre o custo de produção da energia e o preço 

de venda. Como o custo estimado pelo modelo LCOE é por MWh, esta aproximação é razoável. 

Para realizar esta adaptação, recorremos a dados públicos da bolsa de valores 

BM&FBovespa e estimamos a margem média das empresas do setor elétrico. Apesar de as 

empresas atuarem em diferentes estágios da cadeia de valor (a saber, a cadeia é composta por 

geração, transmissão e distribuição) e nem todas serem públicas, consideramos que a margem 

média das empresas negociadas na bolsa seja suficientemente representativa da média das 

empresas do setor. As dez empresas mais líquidas da bolsa de valores do setor elétrico entre 

2003 e 2013 foram AES Tietê (controladora da Eletropaulo), Cemig, Cesp, Copel, Light S/A, 

Tractebel, AES Elpa, Ampla, Celpe, Coelce, Elektro e Coelba. Consideramos que estas 

empresas sejam representativas do conjunto de empresas do setor elétrico, dado que as outras 

tiveram índices de liquidez extremamente baixos.  

As empresas do setor elétrico costumam ter margens altas e, graças a este fato, terem um 

desempenho excelente na bolsa de valores. Notavelmente, a AES Tietê, a Coelce, a Cemig e a 

Tractebel foram, respectivamente, as 2ª, 3ª, 5ª e 7ª empresas que mais distribuíram dividendos 

entre 2003 e 2013, dentre todas as negociadas na bolsa (cálculo do autor com dados da 

BM&FBovespa). 

As margens brutas em 2013 para as dez empresas supracitadas foram: 

AES Tietê Cemig Cesp Copel Light S/A Tractebel 

66,7% 36,1% 64,7% 19,2% 26,1% 47,7% 

AES Elpa Ampla Celpe Coelce Elektro Coelba 

4,8% 26,4% 12,9% 14,5% 17,2% 27,2% 

 

Tabela 13 – Margens das empresas do setor elétrico mais líquidas 

 

As empresas têm, portanto, uma média de margem de lucro bruta de 30,3%. Por 

simplicidade, assumiremos a hipótese de que a margem das empresas é em média constante, 

isto é, que as variações nos seus custos são sempre compensadas por variações proporcionais 

no preço de venda ao governo.  

Em resumo, a nossa abordagem consistirá em converter os dados do modelo LCOE da 

BNEF para o mercado brasileiro através da informação sobre a margem bruta das empresas 
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obtida na BM&FBovespa e da taxa de câmbio vigente no período analisado. Em seguida, 

calcularemos os custos, riscos e covariâncias entre as fontes, que são as informações necessárias 

para a aplicação efetiva dos modelos de otimização de portfólio. Relembramos que o risco 

corresponde à variância dos custos. 

4.5. Análise preliminar dos dados 

Fontes de Energia 

Apresentamos abaixo as 19 fontes catalogadas pela BNEF, em ordem decrescente de custo 

médio de geração de energia, com explicações para as mais modernas. 

1. Gás Natural e Petróleo. 

2. Geotérmica: utiliza-se como fonte o calor proveniente do interior da Terra (até 64 

quilômetros de profundidade), como gêiseres e vulcões. 

3. Cogeração: é um processo onde eletricidade e calor são gerados conjuntamente, 

através do aproveitamento de mais de 70% da energia térmica proveniente da queima 

dos combustíveis. Geralmente, o combustível utilizado é gás natural. 

4. Hidrelétrica. 

5. Carvão. 

6. Eólica em terra (onshore): gerada através da instalação de parques eólicos que 

utilizam a energia do vento. 

7. Geotérmica binária: similar à geotérmica normal, porém permite a utilização de 

fontes de temperatura moderada. 

8. Resíduos sólidos: gerada a partir de dejetos urbanos, através da biomassa contida. 

9. Nuclear. 

10. Biomassa por incineração: gerada a partir de biomassa, como lenha, bagaços de cana, 

papel e palha de arroz. 

11. Biomassa anaeróbica: o processo de decomposição da biomassa é feito por bactérias, 

que, ao decompor o material, produzem biogás (metano e dióxido de carbono).  

12. Biomassa por gaseificação:  a conversão do combustível sólido em gás ocorre por 

meio de reações termoquímicas. 

13. Fotovoltaica filme fino: transformam a energia solar em energia elétrica através do 

efeito fotovoltaico. A primeira geração de células fotovoltaicas era constituída por 
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silício, porém as novas gerações utilizam um filme fino que reduz os custos de 

manufatura e manutenção. 

14. Fotovoltaica móvel com silício: é a primeira geração de células fotovoltaicas, com 

um rendimento maior graças à mobilidade, permitindo direcionar às células em direção 

aos raios de sol. 

15. Eólica no mar (offshore). 

16. Fotovoltaica fixa com silício: a primeira geração de células fotovoltaicas, sem o 

mecanismo de direcionamento das células. 

17. Refletor linear: um conjunto de espelhos que focam a luz do sol em um ponto, de tal 

forma a deixá-la até 30 vezes mais intensa. Neste ponto, um líquido térmico (capaz de 

manter estado líquido mesmo a altas temperaturas) é aquecido e, em seguida, utilizado 

para a vaporização de água. 

18. Marés: é obtida por meio do aproveitamento da energia proveniente do desnível das 

marés. Para que essa energia seja revertida em eletricidade é necessária a construção 

de barragens, eclusas e unidades geradoras de energia. O sistema utilizado é 

semelhante ao de uma usina hidrelétrica. 

19. Ondas do mar: transformação da energia das ondas em energia elétrica.  

Custos 

O gráfico a seguir mostra os retornos por fonte, em R$/KWh, segundo a base de dados da 

BNEF. Por consistência, denominamos os retornos de LROE (retornos nivelados de energia, 

ou levelized return of energy). Relembramos que os retornos são os inversos dos custos. 

 

Figura 20 – Retornos nivelados de energia (LROE) de acordo com a BNEF 
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O retorno da geração por hidrelétricas é de 6,28KWh/R$, correspondendo a um custo de 

geração de R$159/MWh, sem distinção entre hidrelétricas grandes e pequenas. Apesar de este 

valor estar acima da média paga pelo governo pela energia advinda de hidrelétricas, no leilão 

de 30 de julho de 2010, o preço pago pela ANEEL pela energia das usinas hidrelétricas de 

Pirapora, Canaã, Jamari e Santa Cruz do Montenegro (todas na região Sudeste) foi de, em 

média, R$154. Após esta validação da fonte mais importante da matriz brasileira, consideramos 

que a faixa de valores que obtivemos é plausível.  

Notamos que as tecnologias mais tradicionais são consideravelmente mais baratas do que 

as mais modernas. Com exceção de eólica em terra e geotérmica, que têm um ótimo retorno, as 

outras tecnologias inovadoras ainda possuem em geral custos bastante elevados. 

Riscos 

O gráfico abaixo compara os riscos de produção, por fonte, segundo a base de dados da 

BNEF. O risco é medido nos modelos de otimização através da variância dos retornos, porém 

mostraremos na figura abaixo o desvio-padrão, pois este é mais fácil de interpretar, por ser 

expresso na mesma unidade que o retorno (KWh/R$). 

 

Figura 21 – Riscos das fontes de energia de acordo com a BNEF 

Quanto aos custos, não há nenhum padrão claro que diferencie as tecnologias. Notamos, 
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tecnologia seja considerada um ativo muito interessante, do ponto de vista de teoria de 

portfólios.  

Covariâncias 

A matriz das covariâncias se encontra no Apêndice, devido ao seu tamanho (19x19).  

4.6. Resultados 

A figura abaixo contrapõe a fronteira eficiente da matriz energética brasileira, calculada de 

acordo com o modelo clássico de Markowitz, e quatro portfólios importantes para o Brasil: o 

atual portfólio de geração e os portfólios A, B e C, que serão detalhados a seguir. 

 

Figura 22 – Fronteira eficiente da matriz energética brasileira 

 

Os três portfólios destacados na figura, chamados de A, B e C, são essenciais para a 

otimização do portfólio brasileiro: 
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A e B. Em particular, o ponto A corresponde a um retorno de 6,314 KWh/R$ e a 

um risco (desvio-padrão) de 0,053 KWh/R$. A partir de A, o ganho de retorno passa 
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a interessante propriedade de equivaler a 88% do retorno máximo com apenas 17% 

do risco máximo. 

Além disso, o portfólio A está praticamente na mesma abscissa que a atual matriz 

energética brasileira, sendo portanto próximo do portfólio de menor risco mantendo 

o atual retorno. 

B. O portfólio B, por sua vez, equivale a um segundo ponto onde há uma grande 

alteração na inclinação da fronteira eficiente. Ele seria, portanto, o “último” 

portfólio (na direção de risco crescente) que ainda possui um balanço interessante 

entre risco e retorno interessante. A curva que interliga os portfólios A e B é, 

segundo a nossa análise, a região mais interessante da fronteira. 

C. O portfólio C se encontra na mesma ordenada que a atual matriz brasileira e, 

consequentemente, equivale ao portfólio com maior retorno se o risco for mantido 

constante. 

A tabela abaixo explicita a composição dos portfólios A, B e C: 

Tecnologia % em A % em B % em C 

Gás e Petróleo 3,3% 24,1% 35,0% 

Geotérmica 10,1% 13,4% 19,3% 

Cogeração 32,8% 30,1% 27,0% 

Hidrelétrica 48,1% 32,4% 18,7% 

Fotovoltaica fixa à 

base de silício 
5,8%   

 

Tabela 14 – Composição dos portfólios A, B e C 

 

Notamos claramente que as tecnologias renováveis modernas, exceto uma,  estão ausentes 

nos portfólios. A razão é simples e já foi discutida anteriormente: elas possuem 

simultaneamente altos custos e altos riscos. A exceção é a célula fotovoltaica fixa à base de 

silício, que tem a interessante propriedade de possuir covariância de praticamente 0 com 

cogeração e com hidrelétrica e covariância bastante negativa com geotérmica. Como cogeração, 

hidrelétrica e geotérmica compõem 91% do portfólio A, a tecnologia fotovoltaica fixa com 

silício atua como um “contraponto” para o risco do portfólio. 
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Como era de se esperar, dados os baixos custos e baixos riscos, as tecnologias mais 

presentes são gás e petróleo, geotérmica, cogeração e hidrelétrica. Como explanado 

anteriormente, a energia hidrelétrica é muito atraente do ponto de vista de teoria de portfólios 

e, consequentemente, é a componente majoritária dos portfólios A e B. 

Apesar de interessantes, os resultados acima são pouco realistas: não é plausível propor 

mudanças radicais no portfólio energético de um país, devido ao volume de investimentos 

necessários para alterar a matriz energética. Levando este fato em consideração, recalculamos 

a fronteira eficiente, adicionando restrições em relação à composição do portfólio, de maneira 

a tornar mais factíveis as mudanças propostas. As restrições adicionadas foram: 

 Gás Natural e Petróleo: mínimo de 3% e máximo de 15%. O mínimo decorre da 

plausibilidade do modelo e o máximo para evitar que o país seja excessivamente 

dependente de petróleo. Conforme Awerbuch e Spencer (2007), variações no preço 

do petróleo estão entre as maiores fontes de risco para portfólios de energia. 

 Geotérmica e cogeração: máximo de 3%, por plausibilidade. 

 Hidrelétrica: mínimo de 65% e máximo de 85%, por questões de factibilidade, de 

dificuldade de alteração da matriz energética e para garantir o uso de outras fontes. 

 Carvão: máximo de 20%. 

 Biomassa: entre 3% e 20%, para manter o uso da energia renovável. 

 Nuclear: entre 1% e 20%, por questão de compatibilidade com a atual matriz. 

 Geotérmica binária: máximo de 5%. 

 Eólica em terra: mínimo de 3% e máximo de 10%, devido às boas propriedades e 

para incentivar o uso de energias renováveis, porém mantendo a coerência com a 

atual matriz.  

 Fotovoltaica fixa com silício: mínimo de 3%, pela boa combinação risco-retorno e 

para aumentar o uso de fontes modernas e renováveis. 

 Demais energias: máximo de 10%. 

 

A figura a seguir contrapõe a nova fronteira eficiente e a atual matriz: 
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Figura 23 – Fronteira eficiente com restrições de factibilidade 

 

Notamos que o comprimento da fronteira eficiente foi reduzido após a introdução das 

restrições. Este fenômeno é esperado, conjuntamente com o deslocamento da fronteira, que foi 

levada na direção sudeste, com retornos menores e riscos maiores. Tal qual aconteceu com a 

fronteira sem restrições, também focaremos a atenção sobre um portfólio específico da 

fronteira. Este portfólio, denominado de MKW2014 por ter sido obtido através do modelo de 

Markowitz com dados até 2014, é o mais próximo da atual matriz brasileira e possui ótimas 

propriedades de risco e retorno. Para que possamos comparar o portfólio MKW2014 com a 

fronteira eficiente irrestrita, apresentamos o gráfico abaixo. 

 
Figura 24 – Fronteira eficiente irrestrita e o portfólio MKW2014 
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Notamos que, apesar da inclusão das restrições, o portfólio MKW2014 não se afastou tanto 

da fronteira. Em particular, mover a matriz em direção ao portfólio MKW2014 equivale a 

movê-la na direção da curva A-B da fronteira irrestrita, que, como vimos anteriormente, tem 

ótimas combinações risco-retorno. Portanto, a recomendação final deste trabalho é que o Brasil 

tente aproximar a matriz energética atual tanto quanto possível deste portfólio, explicitado 

abaixo: 

Tecnologia % em MKW2014 

Gás e Petróleo 15,0% 

Geotérmica 3,0% 

Cogeração 3,0% 

Hidrelétrica 69,0% 

Eólica em terra 3,0% 

Nuclear 1,0% 

Biomassa incineração 3,0% 

Fotovoltaica móvel com silício 3,0% 
 

Tabela 15 – Composição do portfólio MKW2014 

 

Este portfólio possui um retorno de 6,204 KWh/R$ e um risco (desvio-padrão) de 0,141 

KWh/R$. Em comparação com a atual matriz brasileira, com retorno de 6,13 KWh/R$ e risco 

de 0,165 KWh/R$, a melhora é notável, especialmente quanto ao risco, que caiu 14,5%. 

4.7. Análise de sensibilidade à energia hidroelétrica 

Realizaremos a seguir um estudo de quão sensível a fronteira eficiente é em relação à 

restrição de proporção mínima de energia hidrelétrica no portfólio. Como sabemos, a matriz 

brasileira é altamente dependente de recursos hídricos, com 71% da energia brasileira provindo 

de centrais hidrelétricas. Esta é, naturalmente, uma enorme fonte de riscos, devido 

simultaneamente à concentração do portfólio e à alocação majoritária em uma componente que 

não é a que tem a melhor relação risco-retorno.  

A perspectiva de portfólios não é a única que evidencia os perigos de uma proporção tão 

alta de energia hidroelétrica. Com a escassez de chuvas no país, a chamada “crise hídrica” 

atualmente assola o país e em especial a região Sudeste. Desde 12 de junho de 2014, é o volume 

morto do sistema Cantareira que abastece as casas de cerca de 9 milhões de pessoas na capital 
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e região metropolitana de São Paulo. Com mais de 70% da energia do país dependente de água, 

os benefícios da diversificação da matriz energética do país são evidentes também sob as 

perspectivas geográfica e geológica (Balanço Energético Nacional, 2014). 

 Para testar qual a variação do risco e do retorno em função da principal fonte de energia 

do Brasil, testamos o modelo com cinco restrições diferentes. Para manter a plausibilidade do 

modelo, começamos com restrição de mínimo de 55% de energia hidrelétrica no Brasil e 

avançamos a passos de 5% até 75%.  

Abaixo encontram-se as cinco fronteiras eficientes, em ordem crescente (da esquerda para 

a direita) de proporção mínima de energia hidrelétrica. 

  

Figura 25 – Sensibilidade da fronteira eficiente à energia hidrelétrica 

 

Torna-se evidente, a partir da figura, que a fronteira eficiente do Brasil é extremamente 

sensível à proporção mínima de energia hidrelétrica.  As fronteiras se deslocam no sentido de 

menor risco ao passo que a restrição é relaxada, indicando que grande parte do risco da atual 

matriz provém da excessiva proporção de energia hidrelétrica. 
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Alternativamente, podemos interpretar os deslocamentos das matrizes do ponto de vista 

dos retornos. Não obstante a alteração da proporção mínima, o retorno máximo da fronteira 

(ponto mais à direita de cada fronteira) se mantém praticamente inalterado. Este fato indica que, 

concomitantemente ao alto risco decorrente da concentração do portfólio, o Brasil não recebe 

nenhum acréscimo minimamente significativo do ponto de vista do retorno. 

4.8. Comparação com outros resultados 

Por fim, realizamos um breve estudo comparativo entre os resultados deste trabalho e os 

de estudos similares, dos quais destacamos três: 

 PDE2020 (Ministério de Minas e Energia, 2012): A Secretaria de Planejamento e 

Desenvolvimento Energético do Ministério de Minas e Energia publica anualmente 

um estudo chamado de Plano Decenal de Expansão de Energia (PDE2020). O 

relatório leva em consideração projeções de diversos indicadores sociais, técnicos 

e macroeconômicos, como PIB, população, e oferta e demanda de energia, e estima 

qual será a matriz energética brasileira em 2020. 

 

 PSW2020 (WWF-Brazil,2012): O WWF (World Wildlife Fund) realizou um 

estudo denominado de Power Switch 2020 (PSW2020), focado majoritariamente 

em uma matriz energética verde e sustentável proposta para o ano de 2020.  

 

 BAU2020: No mesmo relatório em que o WWF propõe um cenário sustentável, um 

cenário menos consciente ecologicamente é proposto, chamado de business-as-

usual (BAU2020). Este cenário é baseado em projeções acerca da situação 

macroeconômica e energética do país em 2020, caso poucas políticas verdes sejam 

adotadas. 

A figura a seguir localiza no plano retorno-risco os três portfólios acima, conjuntamente 

com a fronteira eficiente irrestrita e o portfólio MKW2014 que propusemos. 
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Figura 26 – Comparação com projeções de outros estudos 

 

O primeiro ponto importante desta figura é que, de acordo com o modelo de Markowitz e 

os dados da BNEF, o portfólio MKW2014 é o único que melhora tanto o retorno quanto o risco 

da matriz energética brasileira. O portfólio PSW2020 diminui levemente os riscos, ao passo 

que reduz drasticamente os retornos. Por sua vez, o portfólio BAU2020 apresenta um grande 

acréscimo de retorno, mas que vem acompanhado de um aumento também do risco. O portfólio 

PDE2020 é praticamente equivalente à atual matriz brasileira, com pioras leves tanto de risco 

quanto de retorno. Diferentemente das projeções, o portfólio que nós propomos, MKW2014, 

caminha na direção noroeste do plano risco-retorno: ele aumenta o retorno ao mesmo tempo 

em que diminui o risco, sendo portanto a única proposta que alia os benefícios tanto do aumento 

do retorno quando de redução de riscos. 

O segundo ponto relevante a ser notado é que as três projeções caminham em direções 

distintas do plano. PSW2020, por focar em fontes energéticas sustentáveis, resulta num 

decrescimento do retorno. No entanto, o risco também diminuiu, indicativo de que as 

tecnologias foram bem selecionadas. BAU2020 e PDE2020, dada a menor preocupação 
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ecológica, resultam em portfólios com retornos no mínimo iguais aos atuais. O cenário 

business-as-usual sacrificou a redução do risco em função do grande aumento de retorno, 

enquanto que o Plano Decenal de Expansão da Energia foi extremamente conservador quanto 

às mudanças propostas, alterando pouco a matriz segundo o plano risco-retorno. 

O último ponto a salientar é que a natureza do portfólio MKW2014 é diferente da dos 

demais portfólios acima. PSW, BAU e PDE são projeções atreladas a hipóteses altamente 

realísticas. O portfólio MKW2014, apesar de adicionarmos restrições de factibilidade, 

corresponde a um ótimo teórico, um modelo a ser usado como guia para políticas energéticas 

futuras. Desta maneira, o papel desempenhado por estes portfólios é distinto. Enquanto que as 

projeções representam cenários prováveis, o portfólio MKW2014 simboliza a matriz energética 

ideal para o Brasil, do ponto de vista de retorno e risco – um alvo a ser alcançado. 

A recomendação final deste trabalho é que, do ponto de vista de retorno e risco, a matriz 

energética brasileira caminhe na direção ao portfólio MKW2014, aliando aumento de energia 

por unidade monetária investida (retorno) e redução de riscos. 
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5. CONCLUSÕES 

 

Com o objetivo de realizar uma análise da matriz energética brasileira sob a perspectiva de 

teoria de portfólios, iniciamos o estudo selecionando um conjunto de modelos de otimização de 

portfólio da literatura acadêmica composto por 48 modelos. Estes modelos são gerados a partir 

das combinações entre seis fatores, classificados entre extrínsecos, caso alterem apenas a o 

modo de utilização do modelo, ou estruturais, caso tragam diferenças profundas no 

funcionamento dos modelos. 

Analisamos estes modelos sob as métricas de desempenho e rugosidade, determinando que 

o modelo tradicional de Markowitz tem o melhor balanço global entre desempenho e 

rugosidade. Este modelo, não obstante o grande número de variações analisadas neste trabalho, 

indubitavelmente mantém a sua posição como modelo de melhor desempenho: no nosso teste 

final, os resultados do Markowitz tradicional foram pelo menos 70% superiores aos dos outros 

modelos. 

Adicionalmente, confirmamos estudos anteriores e verificamos que utilizar otimização 

bayesiana diminui a rugosidade dos modelos, sendo portanto um modelo mais robusto de 

otimização. Infelizmente, obtivemos evidência de que, simultaneamente, este modelo piora o 

desempenho global da otimização. 

Constatamos que o CVaR teve uma média de desempenho sempre abaixo do modelo 

clássico de Markowitz, bem como uma rugosidade sempre acima. Desta maneira, tais 

características não justificam a pesada tarefa computacional de calcular o CVaR em cada 

iteração. As redes neurais, por sua vez, demonstraram um ótimo desempenho; porém, como a 

rugosidade delas aumentou desproporcionalmente em relação ao modelo tradicional de 

Markowitz, a razão desempenho/rugosidade diminuiu. 

Após este estudo preliminar, prosseguimos à otimização de dois parâmetros numéricos do 

modelo tradicional de Markowitz, através de algoritmos evolutivos. Encontramos uma 

combinação de parâmetros capaz de melhorar em 331% o desempenho ao longo do período dos 

3400 dias de negociação que antecedem 15 de maio de 2014 (13 anos). Ao reparametrizar os 

outros modelos, todos tiveram melhoras significativas (entre 320% e 1518%). No entanto, 

Markowitz (Close) continuou sendo o melhor, com um desempenho 60% melhor do que o 
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segundo colocado, Bayes (Close). Novamente, a otimização bayesiana apresenta resultados 

mais robustos, conquanto a razão entre desempenho e rugosidade continue pior do que no 

modelo clássico de Markowitz. 

Em seguida, já em posse do modelo de melhor desempenho, prosseguimos à aplicação do 

modelo à matriz energética nacional. Localizamos a atual matriz em relação ao plano de risco-

retorno e demonstramos através da fronteira eficiente que ela é sub-ótima.  

De acordo com diversas restrições de factibilidade que impusemos, tais que reduzir a 

proporção de energia hidrelétricas apenas até certo ponto que consideramos plausível, 

propusemos uma matriz energética que concilia uma redução considerável do risco do portfólio 

e um aumento significativo do retorno, que é definido como a energia gerada por cada unidade 

monetária paga pelo governo. Incentivamos, nesta matriz, o uso de fontes energéticas 

renováveis não-hídricas. A recomendação final deste trabalho, em relação à matriz brasileira, é 

se aproximar deste portfólio ótimo que propomos, que denominamos de MKW2014. 

Posteriormente, analisamos a sensibilidade da otimização em relação à proporção mínima 

de energia hidrelétrica, concluindo que, quanto menos energia hidrelétrica for requerida, melhor 

é para o país, em termos de risco-retorno. 

Finalmente, comparamos os nossos resultados com outras três projeções encontradas na 

literatura, sob a perspectiva do nosso modelo. De acordo com a posição da atual matriz 

brasileira, verificamos que as outras projeções trariam mais consequências negativas do que 

positivas – diferentemente da nossa proposta, que seria benéfica tanto em termos de risco 

quanto de retorno.  
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APÊNDICE 

Matriz das Covariâncias 

De acordo com os dados da BNEF e na ordem de fontes utilizada no corpo do trabalho: 

 

 


